Изображение на обложке

ФЛУОРЕСЦЕНТНОЕ ОПРЕДЕЛЕНИЕ ПАРОВ НИТРОБЕНЗОЛА С ИСПОЛЬЗОВАНИЕМ ДОПИРОВАННОГО ФЛУОРОФОРАМИ ПОЛИСТИРОЛА

R. D. Chuvashov, D. V. Belyaev, K. O. Khokhlov, A. A. Baranova, M. Zen Eddin, I. I. Milman, E. V. Verbitskiy

Аннотация


Интеграцией флуоресцентных веществ в полимерные матрицы можно улучшить их сенсорные свойства и фотостабильность. В работе получены и исследованы флуоресцентные материалы на основе допированного флуорофорами полистирола в качестве сенсоров на экотоксикант нитробензол в газовой фазе. Меламин-формальдегидная пена предложена в качестве проницаемого субстрата для нанесения сенсорных составов. Исследовано влияние техники создания пористой поверхности материала Breath Figure на сенсорные свойства. Пределы обнаружения нитробензола в газовой фазе с использованием полученных материалов были оценены экспозицией малым концентрациям паров нитробензола. Измерения флуоресцентного сигнала были выполнены с помощью оригинальных сенсорного элемента и регистратора люминесценции, применяющих комбинацию флуоресцентных материалов. Разработанное техническое решение регистратора люминесценции является простым в применении, портативным, автоматизированным и позволяет с использованием полученных полимерных материалов обнаружение паров нитробензола в концентрациях ниже предельно допустимой по гигиеническим нормативам.

Полный текст:

PDF

Литература


REFERENCES

Lai D.Y., Woo Y.-T. Hamilton & Hardy's Industrial Toxicology. New York, Wiley, 2015. 1340 p.

GN 1.2.3685-21. Gigienicheskie normativy i trebovanija k obespecheniju bezopasnosti i (ili) bezvrednosti dlja cheloveka faktorov sredy obitanija [Hygienic standard 1.2.3685-21. Hygienic standards and requirements to ensure safety and (or) harmlessness of environmental factors for humans]. Moscow, Ministry of Justice of the Russian Federation, 2021. 469 p. (in Russian).

Cortada C., Vidal L., Canals A. Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2011. vol. 85, pp. 2546–2552. doi: 10.1016/j.talanta.2011.08.011

Chou A., Jaatinen E., Buividas R., Seniutinas G., Juodkazis S. SERS substrate for detection of explosives. Nanoscale, 2012, vol. 4, pp. 7419-7424. doi: 10.1039/C2NR32409A

Ponrathnam T., Cho J., Kurup P.U., Kumar K., Nagarajan R. Enhancing detection of nitroaromatic vapors by utilizing polymer coatings on quartz crystal microbalances having strong dipoles. Sens. Actuators B, 2015, vol. 216, pp. 443-452. doi: 10.1016/j.snb.2015.04.022

Verbitskiy E.V., Kvashnin Yu.A., Baranova A.A., Khokhlov K.O., Chuvashov R.D. Synthesis and characterization of linear 1,4-diazine-triphenylamine–based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines. Dyes Pigm., 2020, vol. 178, Article 108344. doi: 10.1016/j.dyepig.2020.108344

Khan I.M., Shakya S. Exploring Colorimetric Real-Time Sensing Behavior of a Newly Designed CT Complex toward Nitrobenzene and Co2+: Spectrophotometric, DFT/TD-DFT, and Mechanistic Insights. ACS Omega, 2019, vol. 4, no. 6, pp. 9983-9995. doi: 10.1021/acsomega.9b01314.

Alizadeh T., Hamedsoltani L. Graphene/graphite/molecularly imprinted polymer nanocomposite as the highly selective gas sensor for nitrobenzene vapor recognition. J. Environ. Chem. Eng., 2014, vol. 2, no. 3, pp. 1514-1526. doi: 10.1016/j.jece.2014.07.007.

Feng X., Wu J., Liao P., Guo J., Li Z. Pillararene for fluorescence detection of n-alkane vapours. Mater. Chem. Front., 2021, vol. 5, pp. 7910. DOI: 10.1039/d1qm01112.

Cheng Z., Mo W., Chen Y. Liu H., Li X. A new strategy for selective fluorescence detection of benzaldehyde and nitrobenzene. Microchemical journal, 2022, vol. 172, Article 106896. doi: 10.1016/j.microc.2021.106896.

Tian D., Li Y., Chen R.-Y., Chang Z., Wang G.-Y. A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. J. Mater. Chem. A, 2014, vol. 2, pp. 1465. doi: 10.1039/c3ta13983b.

Qu Y.-J., Li J. A water-stable La-based coordination polymer for highly fluorescent detection of Fe3 + ion and nitrobenzene vapor. Inorg. Chem. Commun., 2017, vol. 76, pp. 77-80. doi: 10.1016/j.inoche.2017.01.01.5

Barata P.D., Prata J.V. Fluorescent Calix[4]arene-Carbazole-Containing Polymers as Sensors for Nitroaromatic Explosives. Chemosensors, 2020, vol. 8, pp. 128. doi: 10.3390/chemosensors8040128.

Sun X., Brückner C., Nieh M.-P., Lei Y. A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: preparation, characterization and its application for explosives detection. J. Mater. Chem. A, 2014, vol. 2, pp. 14613-14621. doi: 10.1039/C4TA02554G.

Desai N.K., Mahajan P.G., Kumbhar A.S., Kolekar G.B., Patil S.R.. Nanoporous p-terphenyl-polystyrene films containing perylene: fabrication, characterization and remarkable fluorescence resonance energy transfer based blue emitting properties. J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 1118-1129. doi: 10.1007/s10854-015-3860-z.

He G., Peng H., Liu T., Yang M., Zhang Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J. Mater. Chem., 2009, vol. 19, pp. 7347–7353. doi: 10.1039/B906946A.

Shaw P.E., Burn P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes? Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 29714-29730. doi: 10.1039/C7CP04602B.

Zhang A., Bai H., Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev., 2015, vol. 115, no. 18, pp. 9801-9868. doi: 10.1021/acs.chemrev.5b00069.

Xue J., Tong W., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev., 2019, vol. 119, pp. 5298−5415. doi: 10.1021/acs.chemrev.8b00593.

Verbitskiy E.V., Baranova A.A., Lugovik K.I., Shafikov M.Z., Khokhlov K.O. Detection of nitroaromatic explosives by new D–π–A sensing fluorophores on the basis of the pyrimidine scaffold. Anal. Bioanal. Chem., 2016, vol. 408, no. 15, pp. 4093–4101. doi: 10.1007/s00216-016-9501-4.

Venkataramana G., Sankararaman S. Synthesis, Absorption, and Fluorescence-Emission Properties of 1,3,6,8-Tetraethynylpyrene and Its Derivatives. Eur. J. Org. Chem., 2005, vol. 19, pp. 4162–4166. doi: 10.1002/ejoc.200500222.

Shanmugaraju S., Joshi S. A., Mukherjee P. S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J. Mater. Chem., 2011, vol. 21, pp. 9130–9138. doi: 10.1039/C1JM10406C.

Chung F.-J., Liu H.-Y., Jiang B.-I., He G.-Y. Random Styrenic Copolymers with Pendant Pyrene Moieties: Synthesis and Applications in Organic Field-Effect Transistor Memory. J. Polym. Sci., Part A: Polym. Chem., 2016, vol. 54, no. 7, pp. 910-917. doi: 10.1002/pola.27995.

Lynch E.J., Wilke C.R. Vapor Pressure of Nitrobenzene at Low Temperatures. J. Chem. Eng. Data, 1960, vol. 5, no. 3, p. 300. doi: 10.1021/je60007a018.

Grate J.W., Ewing R.G., Atkinson D.A. Vapor-generation methods for explosives-detection research. Trends Anal. Chem., 2012, vol. 41, pp. 1-14. doi: 10.1016/j.trac.2012.08.007.

Nelson G. Gas mixtures: preparation and control. Boca Raton: CRC Press LLC, 2018, 294 p.

Chuvashov R.D., Baranova A.A., Khokhlov K.O., Verbitskiy E.V. A Detection System with Low Sampling Distortion for Application in Optical Array Sensing in Gas Phase. 2020 7th International Congress on Energy Fluxes and Radiation Effects, IEEE, 2020, pp. 984-988. doi: 10.1109/EFRE47760.2020.9242148.

Ali M.A., Chen S.S.Y., Cavaye H., Smith A.R.G., Burn P.L. Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. Sens. Actuators B, 2015, vol. 210, pp. 550-557. doi: 10.1016/j.snb.2014.12.084.

Fan S., Burn P.L., Shaw P.E. Sensitive and fast fluorescence-based indirect sensing of TATP. RCS Adv., 2019, vol. 9, p. 7032. doi: 10.1039/c9ra00693a.

Wang J., Liu X. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol. Environ. Saf., 2019, vol. 173, pp. 331–338. doi: 10.1016/j.ecoenv.2019.02.037.

Wang J., Yu R., Tao F. Determination of Nitroaromatics Using a Double-Layer of Gelatin Nanofibers and a Pyrene-Doped Polystyrene Membrane. Analytical Letters, 2018, vol. 51, no. 18, pp. 2878-2894. doi: 10.1080/00032719.2018.1455104.

Jang H.-S., Cho H.-S., Uhrig D., Nieh M.-P. Insight into the interactions between pyrene and polystyrene for efficient quenching nitroaromatic explosives. J. Mater. Chem. C, 2017, vol. 5, no. 47, pp. 12466-12473. doi: 10.1039/C7TC04288D.

Yang J.-S., Swager T.M. Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. J. Am. Chem. Soc., 1998, vol. 120, pp.5321-5322. doi: 10.1021/ja9742996.

Li Z., Xu X., Quan H., Zhang J., Zhang Q. Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chem. Eng. J., 2011, vol. 410, Article 128268. doi: 10.1016/j.cej.2020.128268.

Han J., Miao L., Song Y. Preparation of co-Co 3 O 4/carbon nanotube/carbon foam for glucose sensor. J Mol Recognit., 2020, vol. 33, no. 3, Article e2820. DOI: 10.1002/jmr.2820.

Zhang C., Hou Z.-L., Zhang B.-X., Fang H.-M., Bi S. High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon, 2018, vol. 137. pp. 467-474. doi: 10.1016/j.carbon.2018.05.055.

Kaewnu K., Promsuwan K., Phonchai A., Thiangchanya A., Somapa D. Cost-Effective Foam-Based Colorimetric Sensor for Roadside Testing of Alcohol in Undiluted Saliva. Chemosensors, 2021, vol. 9, p. 334. doi: 10.3390/chemosensors9120334.

Song Y., Shan B., Feng B., Xu P., Zeng Q. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection. RCS Adv., 2018, vol. 8, pp. 27008-27015. doi: 10.1039/c8ra04596h.

Diehl K.L., Anslyn E.V. Array sensing using optical methods for detection of chemical and biological hazards. Chem. Soc. Rev., 2013, vol. 42, pp. 8596–8611. doi: 10.1039/C3CS60136F.

Li Z., Suslick K.S. The Optoelectronic Nose. Acc. Chem. Res., 2020, vol. 54, no. 4, pp. 950–960. doi: 10.1021/acs.accounts.0c00671.

Baranova A.A., Khokhlov K.O., Chuvashov R.D., Verbitskiy E.V., Cherpakova E.M., Rusinov G.L., Charushin V.N. The portable detector of nitro-explosives in vapor phase with new sensing elements on a base of pyrimidine scaffold. J. Phys. Conf. Ser., 2017, vol. 830, pp. 012159. doi: 10.1088/1742-6596/830/1/012159.

Gillanders R.N., Samuel I.D.W., Turnbull G.A. A low-cost, portable optical explosive-vapour sensor. Sens. Actuators B, 2017, vol. 245, pp. 334–340. doi: 10.1016/j.snb.2017.01.178.

Caron T., Guillemot M., Montméat P., Veignal F., Perraut F. Ultra trace detection of explosives in air: Development of a portable fluorescent detector. Talanta, 2010, vol. 81, no.1-2, pp. 543-548. doi: 10.1016/j.talanta.2009.12.040.

Liu K., Wang Z., Shang C., Li X., Peng H. Unambiguous Discrimination and Detection of Controlled Chemical Vapors by a Film-Based Fluorescent Sensor Array. Adv. Mater. Tech., 2019, vol. 4, no. 7, Article 1800644. doi: 10.1002/admt.201800644

Liu K., Shang C., Wang Z., Qi Y., Miao R. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat. Commun., 2018, vol. 9, pp. 1695. doi: 10.1038/s41467-018-04119-6

Gotor R., Gaviña P., Costero A.M. Low-cost, portable open-source gas monitoring device based on chemosensory technology. Meas. Sci. Technol., 2015, vol. 26, no. 8, Article 085103. doi: 10.1088/0957-0233/26/8/085103.

Wan L.S., Ke B., Li X.K., Meng X.L., Zhang L.Y. Honeycomb-patterned films of polystyrene/poly(ethylene glycol): Preparation, surface aggregation and protein adsorption. Sci. China, Ser. B: Chem., 2009, vol. 52, pp. 969-974. doi: 10.1007/s11426-009-0007-1.

Yu Y., Xu W., Fu Y., Cao H., He Q. Receptor fluoride fine-tuning of fluorescent polymer probe for highly sensitive fluorescence response of methamphetamine vapor. Dyes Pigm., 2020, vol. 172, Article 107852. doi: 10.1016/j.dyepig.2019.107852.

Sauer M., Hofkens J., Enderlein J. Handbook of Fluorescence Spectroscopy and Imaging. Weinheim: Wiley-VCH, 2011, 281 p.

Demchenko A.P. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc., 2020, vol. 8, Article 022001. doi: 10.1088/2050-6120/ab7365.

Vogelsang J., Kasper R., Steinhauer C., Person B., Heilemann M. Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. Angew Chem. Int. Ed. Engl., 2008, vol. 47, no. 29, pp. 5465-5469. doi: 10.1002/anie.200801518.

Diaspro A., Chirico G., Usai C., Ramoino P., Dobrucki J. Handbook of Biological Confocal Microscopy. New York,Springer Science+Business Media LLC, 2006, 403 p.




DOI: https://doi.org/10.15826/analitika.2022.26.4.005

Ссылки

  • На текущий момент ссылки отсутствуют.