Изображение на обложке

Квантовые точки: опыт и перспективы применения в аналитических системах

T. A. T.A. Kuchmenko, T. N. Khmelevskaya

Аннотация


Статья носит обзорный характер, в ней анализируется динамика публикационной активности, оцениваются возможности применения квантовых точек для решения различных аналитических задач. При этом внимание уделяется как традиционным, так и сравнительно редким направлениям аналитического применения этих наноструктур. Представлен краткий обзор типов, достоинств и недостатков способов синтеза, влияния внешних факторов на ширину запрещенной зоны и интенсивность люминесценции неорганических наноразмерных люминофоров - квантовых точек разной природы. Систематизированы области применения и основные задачи, решаемые с применением квантовых точек. Обсуждаются их аналитические характеристики, эксплуатационные свойства и способы управления ими. Показано, что эффективным способом управления аналитическими свойствами систем на основе квантовых точек является направленное изменение сродства к компонентам за счет варьирования природы стабилизирующей или модифицирующей оболочки. Для использования в аналитических целях выделены полупроводниковые коллоидные квантовые точки, покрытые оболочкой с большей шириной запрещенной зоны, как наиболее часто используемые системы, благодаря их хорошим фотостабильности и квантовому выходу флуоресценции. Показаны преимущества и недостатки других типов оболочек, а также способы их модификации. Рассмотрены решения для органического анализа и медицинской диагностики. Рассмотрены системы квантовых точек, применяемые в качестве биосенсоров, с различными направляющими агентами, сопоставлены их свойства, достоинства и недостатки. Определены мало проработанные вопросы и решения в направлении применения квантовых точек для разработки сенсорных систем, использования их для неинвазивного анализа живых систем по результатам детектирования легко летучих органических соединений.

Ключевые слова: квантовые точки, применение, анализ, обзор

Полный текст:

PDF

Литература


REFERENCES

Reed M.A., Randall J.N., Aggarwal R.J., Matyi R.J., Moore T.M., Wetsel A.E. Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett., 1988, vol. 60, no. 6, pp. 535-537. doi: 10.1103/PhysRevLett.60.535.

Klostranec J., Chan W. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mat., 2006, vol. 18, no. 15, pp. 1953-1964. doi:10.1002/adma.200500786.

Kluson P., Drobek M., Bartkova H., Budil I. Welcome in the Nanoworld, Chem. Lysty, 2007, vol. 101, no. 4, pp. 262-272.

Ferancova A., Labuda J. DNA Biosensors based on nanostructured materials. In book: Nanosructured Materials in Electrochemistry: Wiley, 2008, pp. 409-434.

Kral V., Sotova J., Neuwirth P., Kejik Z., Zaruba K., Martasec P. Nanomedicine – Current status and perspectives: - A big potential or just a catch word. Chem. Listy, 2006, vol. 100, no. 1, pp. 4-9.

Ghimire S., Biju V. Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting. J. Photochem. Photobiol. C, 2018, vol. 34, pp. 137-151. doi:10.1016/j.jphotochemrev.2018.01.004.

Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, vol. 44, pp. 362-381. doi: 10.1039/c4cs00269e.

Ischenko A.A., Fetisov G.V., Aslanov L.A. Nanokremnij: svojstva, poluchenie, primenenie, metody issledovanija i kontrolja [Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control]. Мoscow, Physmathlit, 2012. 648 p. (In Russian).

Ischenko A.A., Fetisov G.V., Aslanov L.A. Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control. Boca Raton, Teylar & Francis Group, 2015. 755 p.

Rohini V. S. Control and Application of Carbon Quantum Dots. JRSE, 2022, vol. 4, no. 2, pp. 1656-1996. doi: 10.53469/jrse.2022.04(02).09.

Ermolaev V. L. [Influence of ligands and solvent on nonradiative transitions in semiconductor quantum dots]. Optika i spektroskopija [Optics and spectroscopy], 2018, vol. 125. no. 2. pp. 247-263. doi:10.21883/OS.2018.08.46368.97-18 (In Russian).

Yang P., Zhou L., Zhang S., Wan N., Pan W., Shen W. Facile synthesis and photoluminescence mechanism of graphene quantum dots. J. Appl. Phys, 2014, vol. 116, no. 24, pp. 1-7. doi:10.1063/1.4904958.

Wang Y., Li Z.Н., Wang J., Li J.Н., Lin Y.Н. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011, vol. 29, no. 5, pp. 205-212. doi: 10.1016/j.tibtech. 2011.01.008.

Deng X., Sun J., Yang S., Shen H., Zhou W., Lu J., Ding G., Wang Z. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum. Appl. Phys. Lett, 2015, vol. 107, no. 24, 241905, pp. 1-4. doi:10.1063/1.4937923.

Ledoux G., Gong J., Huisken F., Guillois O., Reynaud C. Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement. Appl. Phys. Lett., 2002, vol. 80, no. 25, pp. 4834-4836. doi:10.1063/1.1485302.

Valenta J., Juhasz R., Linnros J. Photoluminescence from single silicon quantum dots at room temperature. J. Luminesc, 2002, vol. 98, pp. 15-22.

Li Q., He Y., Chang J., Wang L., Chen H., Tan Y.-W., Wang H., Shao Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Amer. Chem. Soc., 2013, vol. 135, no. 40, pp.14924-14927. doi:10.1021/ja407508v.

Jurbergs D., Rogojina E., Mangolini L., Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 2006, vol. 88, no. 23, pp. 1-3. doi: 10.1063/1.2210788.

Mangolini L., Jurbergs D., Rogojina E., Korthagen U. Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. J. Luminesc., 2006, vol. 121, no. 2, pp. 327-334. doi:10.1016/j.jlumin.2006.08.068.

Potrick K., Schmidt T., Bublitz S., Muhlig Chr., Paa W., Huisken F. Determination of the photoluminescence quantum efficiency of silicon nanocrystals by laser-induced deflection. Appl. Phys. Lett., 2011, vol. 98, pp.1-3. doi:10.1063/1.3559224.

Bian F., Sun L., Cai L., Wang Y., Zhao Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, vol. 11, no. 5, pp. 1-25. doi: 10.1002/wnan.1567.

Shamilov R. R., Garayshina R.R., Galyametdinov Yu. G. [Synthesis and Luminescent Properties of CdSe/CdS Hybrid Quantum Dots in Aqueous Organic Media]. Vestnik Kazanskogo tehnologicheskogo universiteta [Herald of technological university], 2014. vol. 17, no. 7, pp. 60-63 (In Russian).

Borgohain K., Mahamuni S. Luminescence behaviour of chemically grown ZnO quantum dots. Semicond. Sci. Technol., 1998, vol. 13, no. 10, pp. 1154-1157. doi:10.1088/0268-1242/13/10/017.

Liu J., Xue W., Jin G., Zhai Z., Jiarong Lv, Wusong Hong, Chen Y. Preparation of Tin Oxide Quantum Dots in Aqueous Solution and Applications in Semiconductor Gas Sensors. Nanomaterials, 2019, vol. 9, no. 240. pp. 1-10. doi:10.3390/nano9020240.

Nath S.S., Ganguly A., Gope G., Kanjilal M.R. SnO2 quantum dots for nano light emitting devices. Nanosystems: Physics, Chemistry, Mathematics, 2017, vol. 8, no. 5, pp. 661-664. doi:10.17586/2220-8054-2017-8-5-661-664.

Matjushkin L.B., Aleksandrova O.A., Maksimov A.I., Moshnikov V.A., Musihin S.F. [Features of the synthesis of luminescent semiconductor nanoparticles in polar and nonpolar media]. Biotehnosfera [Biotechnosphere], 2013, no. 2, pp. 27-32 (In Russian).

Brichkin S.B., Razumov V.F. [Colloidal quantum dots: synthesis, properties and application]. Uspehi himii [Russ. Chem. Rev.], 2016, vol. 85, no. 12, pp. 1297-1312. doi:10.1070/RCR4656 (In Russian).

Zhukov N. D., Shtykov S. N., Gavrikov M. V., Lazarev S. A., Cvetkova O. Ju. [An investigation of the structural and physical properties of colloidal quantum dots of narrow-band semiconductors via electron and scanning probe microscopy]. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal [International Research Journal], 2021, no. 7, pp. 26-34. doi:10.23670/IRJ.2021.109.7.005 (In Russian).

Zhukov N.D., Gavrikov M.V., Shtykov S.N. [Dimensional modeling of synthesis and conductivity of colloidal quantum dots]. Fizika i tehnika poluprovodnikov [Physics and technology of semiconductors], 2022, vol. 56, no. 6, pp. 553-558. doi: 10.21883/FTP.2022.06.52588.9809 (In Russian).

Bennett B.R., Shanabrook B.V., Magno R. Phonons in self-assembled (In, Ga, Al) Sb quantum dots. App. Phys. Lett., 1996, vol. 68, no. 7, pp. 958-960. doi:10.1063/1.116111.

Buchmaier C., Rath T., Pirolt F., Knall A.-C., Kaschnitz P., Glatter O., Wewerka K., Hofer F., Kunert B., Krenn K., Trimmel G. Room temperature synthesis of CuInS2 nanocrystals. RSC Adv, 2016, vol. 6, no. 108, pp. 106120-106129. doi: 10.1039/C6RA22813E.

Konstantatos G., Sargent E.H. Colloidal quantum dot photodetectors. Infrared Phycs & Technol., 2011, vol. 54, no. 3, pp. 278-282. doi:10.1016/j.infrared.2010.12.029.

Li Z., Yang T., Zhao X., Zhao Q., Yu H., Zhang M. Doping concentration induced ferromagnetism and anti-ferromagnetism in In2S3:Dy3+ quantum dots. J. Phys. Chem. C, 2017, vol. 121, no. 17, pp. 9648-9654. doi:10.1021/acs.jpcc.7b03009.

Pavlov S.A., Pavlov A.S., Maksimova E.Yu., Pavlov A.V., Alekseenko A.V. [Quantum Dots: New Prospects for the Development of Optical Chemical Sensors]. Uspehi v himii i himicheskoj tehnologii [Advances in chemistry and chemical technology], 2018, vol. 32, no. 6. pp. 126-128 (In Russian).

Hines M. A., Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem.,1996, vol. 100, pp. 468-471. doi: 10.1021/jp9530562.

Byrne S.J., Williams Y., Davies A., Corr S.A., Rakovich A., Gun'ko Y.K., Rakovich Y.R., Donegan J.F., Volkov Y. "Jelly dots": synthesis and cytotoxicity studies of CdTe quantum dot gelatin nanocomposites. Small, 2007, vol. 3, no. 7, pp. 1152-1156. doi:10.1002/smll.200700090

Qian H., Dong C., Weng J., Ren J. Facile one-pot synthesis of luminescent, watersoluble, and biocompatible glutathione-coated CdTe nanocrystals. Small, 2006, vol. 2, pp. 747-751. doi: 10.1002/smll.200500530.

Kumar P., Kukkar D., Deep A., Sharma S.C., Bharadwaj L.M. Synthesis of mercaptopropionic acid stabilized CdS quantum dots for bioimaging in breast cancer. Adv. Mater. Lett., 2012, vol. 3, pp. 1-10. doi:10.5185/amlett.2012.icnano.296.

Kumar V.B., Sher I., Rencus-Lazar S., Rotenstreich Y., Gazit E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small, 2023, vol. 19, no. 7, pp. 1-15. doi: 10.1002/smll.202205754

Zdobnova T.A., Lebedenko E.N., Deyev S.М. [Quantum dots for molecular diagnostics of tumors]. Acta naturae, 2011, vol. 3, no 1, pp. 29-47 (In Russian).

Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., Omidifar N., Bahrani S., Rao N.V., Babapoor A., Gholami A., Chiang W.-H. Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers, 2022, vol. 14, no. 617, pp. 1-30. doi:10.3390/polym14030617

Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008, vol. 5, no. 9, pp. 763-775. doi:10.1038/nmeth.1248

Olejnikov V.A., Suhanova A.V., Nabiev I.R. [Fluorescent semiconductor nanocrystals in biology and medicine]. Rossijskie nanotehnologii [Nanotechnologies in Russia], 2007, vol. 2. no. 1-2, pp. 160-173 (In Russian).

Pham X.H., Park S.M., Ham K.M., Kyeong S., Kim J., Hahm E., Kim Y.H., Bock S., Kim W., Jung S., Oh S., Lee S.H., Hwang D.W., Jun B.H. Synthesis and Application of Silica-Coated Quantum Dot in Biomedicine. Int. J. Mol. Sci., 2021, vol. 22, no. 18, pp. 1-19. doi: 10.3390/ijms221810116.

Shaikh S.C., Saboo S.G., Tandale P.S., Memon F.S., Tayade S.D., Haque M.A., Khan S.L. Pharmaceutical and biopharmaceutical aspects of quantum dots - an overview. Int. J. App. Pharm., 2021, vol. 13, no. 5. pp. 44-53. doi:10.22159/ijap.2021v13i5.41623.

Lipatova Zh.O., Aseev V.A., Kolobkova E.V. [Spectral and luminescent characteristics of fluorophosphate glasses activated with manganese and cadmium sulfide quantum dots]. Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2014, vol. 94, no. 6, pp. 77-81 (In Russian).

Jafari M., Shahlaei M., Moradi S., Farhadian N. Metal ion‑doped CdTe ‑ based quantum dots: preparation, characterization and photocatalytic application. Chem.l Papers, 2022, vol. 76, pp. 3215-3226. doi:10.1007/s11696-022-02063-w.

Yu Z., Guo L., Du H., Krauss T., Silcox J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett., 2005, vol. 5, pp. 565-570. doi: 10.1021/nl048245n.

Bilan R., Fleury F., Nabiev I., Sukhanova A. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug. Chem., 2015, vol. 26, no. 4. pp. 609-624. doi: 10.1021/acs.bioconjchem.5b00069.

Sharma V., Mehata M.S. Synthesis of photoactivated highly fluorescent Mn2+ doped ZnSe quantum dots as effective lead sensor in drinking water. Mater. Res. Bull., 2021, vol. 134, pp. 1-31. doi:10.1016/j.materresbull.2020.111121.

Mosadegh S., Mortazavi Y., Khodadadi A. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuat. B-Chem, 2010, vol. 145, no. 1, pp. 7-12. doi:10.1016/j.snb.2009.11.002.

Liu Y., Liu Y., Guo Y., Xu J., Xu X., Fang X., Wang X. Tuning SnO2 Surface Area for Catalytic Toluene Deep Oxidation: On the Inherent Factors Determining the Reactivity. I & EC Research, 2018, vol. 57, no. 42. pp. 1-47. doi:10.1021/acs.iecr.8b03401.

Bang J.H., Choi M.S., Mirzaei A., Oum W., Han S., Kim S.S., Kim H.W. Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int., 2019, vol. 46, no. 1, pp. 1-7. doi:10.1016/j.ceramint.2019.09.010.

Liu H., Zhang W., Yu H., Gao L., Song Z., Xu S., Li M., Wang Y., Song H., Tang J. Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 840-846. doi:10.1021/acsami.5b10188.

Liu H., Shen W., Chen X., Corriou J.-P. A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. JMSE, 2018, vol. 29, no. 21, pp. 18380-18387. doi:10.1007/s10854-018-9952-9.

Haixin L., Shen W., Chen X.Q. A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv, 2019, vol. 9, no. 42, pp. 24519-24526. doi:10.1039/C9RA05439A.

Liu H., Li M., Voznyy O., Hu L. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater., 2014, vol. 27, no. 17, pp. 2718-2724. doi:10.1002/adma.201304366.

Zhang Y., Pan W., Dong G., Zhang D. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. JMSE, 2019, vol. 30, no. 8, pp. 17907-17915. doi:10.1007/s10854-019-02143-w.

Zhang P., Pan A., Yan K., Zhu Y., Hong J., Liang P. High-efficient and reversible temperature sensor fabricated from highly luminescent CdTe/ZnS-SiO2 nanocomposites for rolling bearings. Sens. and Actuat. A - Phys., 2021, vol. 328, pp. 1-8. doi:10.1016/j.sna.2021.112758.

Wei L., Chen H., Liu R., Wang S. Fluorescent sensor based on quantum dots and nano-porphyrin for highly sensitive and specific determination of ethylcarbamate in fermented food. J. Sci. Food Agric., 2021, vol. 101, no. 15, pp. 6193-6201. doi:10.1002/jsfa.11270.

Grzebieniarz W., Nowak N., Khachatryan G.C., Krzan M. The preparation and characterization of quantum dots in polysaccharide carriers (starch/chitosan) as elements of smart packaging and their impacton the growth of microorganisms in food. Materials, 2021, vol. 14, no. 24, pp.1-20. doi:10.3390/ma14247732.

Cai W., Shin D.-W., Chen K., Gheysens O., Cao Q., Wang S. X., Gambhir S. S., Chen X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett., 2006, vol. 6, no. 4, pp. 669-676. doi: 10.1021/nl052405t.

Cai W., Chen K., Li Z.-B., Gambhir S.S., Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med., 2007, vol. 48, no. 11, pp. 1862-1870. doi: 10.2967/jnumed.107.043216.

Akerman M.E., Chan W.C.W., Laakkonen P., Bhatia S.N. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci., 2002, vol. 99, no. 20, pp. 12617-12621. doi:10.1073/pnas.152463399

Zrazhevskiy P., Sena M., Gao X. Designing multifunctional QD for bioimaging, detection and drug delivery. Chem. Soc. Rev., 2010, vol. 39, no. 11, pp. 4326-4354. doi: 10.1039/b915139g.

Stroh M., Zimmer J.P., Duda D.G., Levchenko T.S., Cohen K.S., Brown E.B., Scadden D.T., Torchilin V.P., Bawendi M.G., Fukumura D., Jain R.K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med., 2005, vol. 11, no. 6, pp. 678-682. doi:10.1038/nm1247

Yong K.-T., Ding H., Roy I., Law W.-C. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano, 2009, vol. 3, no. 3, pp. 502-510. doi:10.1021/nn8008933.

Jayagopal A., Russ P.K., Haselton F.R. Surface Engineering of Quantum Dots for In Vivo Vascular Imaging. Bioconjug. Chem., 2007, V.18, no. 5, pp. 1424-1433. doi:10.1021/bc070020r

Yang L., Mao H., Wang Y., Cao Z. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small, 2009, vol. 5, no. 2, pp. 235-243. doi:10.1002/smll.200800714.

Gao X., Cui Y., Levenson R., Chung L.W.K., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, vol. 22, no. 8, pp. 969-976. doi:10.1038/nbt994.

Zimmer J.P., Kim S.-W., Ohnishi S., Tanaka E. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc., 2006, vol. 128, no. 8, pp. 2526-2527. doi:10.1021/ja0579816.

Voura E.B., Jaiswal J.K., Mattoussi H., Simon S. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med., 2004, vol. 10, no. 9, pp. 993-998. doi:10.1038/nm1096.

So M.-K., Xu C., Loening A. M., Gambhir S.S. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol., 2006, vol. 24, no. 3, pp. 339-343. doi:10.1038/nbt1188.

Bruns O., Ittrich H., Peldschus K., Kaul M.G. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat. Nanotechnol., 2009, vol. 4, no. 3, pp. 193-201. doi:10.1038/nnano.2008.405.

Ballou B., Ernst L., Andreko S., Fitzpatrick J. A. J. Imaging vasculature and lymphatic flow in mice using quantum dots. Methods Mol. Biol., 2009, vol. 574, pp. 63-74. doi:10.1007/978-1-60327-321-3_6.

Wang J., Dai J., Xu Y., Dai X., Zhang Y., Shi W., Sellergen B., Pan G. Molecularly imprinted fluorescent test strip for direct, rapid, and visual dopamine detection in tiny amount of biofluid. Small, 2019, vol. 15, no. 1, pp. 1-9. doi:10.1002/smll.201803913.

Shtykov S.N., Rusanova T.Ju. [Nanomaterials and Nanotechnologies in Chemical and Biochemical Sensors: Opportunities and Applications]. Rossijskij himicheskij zhurnal [Russian Journal of General Chemistry], 2008, vol. LII, no. 2, pp. 92-100 (In Russian).

Goryacheva I. Yu., Lenain P., Saeger S. D. Nanosized labels for rapid immunotests. TrAC, 2013, vol. 46, pp. 30-43. doi:10.1016/j.trac.2013.01.013.

Gladyshev P.P., Vasil'ev A.A., Morenkov O.S. [Analytical platform for immunochromatographic two-level diagnostics of dangerous and resistant infections based on proteomic technologies]. Sovremennaja medicina: aktual'nye voprosy: Sbornik statej po materialam LI mezhdunarodnoj nauchno-prakticheskoj konferencii [Modern medicine: topical issues. Collection of articles based on materials of the LI international scientific and practical conference]. Novosibirsk: SibAK, 2016. pp. 22-49 (In Russian).

Zanut A., Rossetti M., Marcaccio M., Ricci F., Paolucci F., Porchetta A., Valenti G. DNA-Based Nanoswitches: Insights into Electrochemiluminescence Signal Enhancement. Anal. Chem., 2021, vol. 93, no. 30, pp. 10397-10402. doi: 10.1021/acs.analchem.1c01683

Zhu W., Zhou Y., Tao M., Yan X., LiuY., Zhou Y. An electrochemical and fluorescence dual-signal assay based on Fe3O4@MnO2 and N-doped carbon dots for determination of hydrogen peroxide. Microchim. Acta, 2020, vol. 187, no. 3, pp. 1-10. doi:10.1007/s00604-020-4163-5.

Novikova L.B., Kuchmenko T.A. [Analytical Capabilities of Artificial Smell and Taste Systems]. Vestnik VGUIT [Proceeding of VSUET], 2019, vol. 81, no. 3, pp. 236-241 (In Russian).




DOI: https://doi.org/10.15826/analitika.2023.27.2.001

Ссылки

  • На текущий момент ссылки отсутствуют.