Изображение на обложке

Interactions in Al2O3 - graphene oxide composite: XPS study

A. I. Kukharenko, S. O. Cholakh, E. Z. Kurmaev, I. S. Zhidkov

Аннотация


The structure of an aluminum oxide/graphene oxide (GO) composite was studied using X-ray photoelectron spectroscopy (XPS). High-energy resolved XPS measurements of Al 2p-core level spectra revealed the formation of Al–O–C bonds, which indicated the occurrence of interfacial reactions between Al2O3 and GO in the process of composite synthesis. An increase in intensity in the near-edge region of XPS valence band (VB) spectrum was observed with increasing GO concentration, indicating possible contribution of the electronic states of carbon. Filling the electronic states on the edge of VB allows to associate GO doping with the loss of dielectric properties of the original Al2O3 compound. Addition of graphene oxide to Al2O3 ceramics changed conductive properties of the composite due to formation of new chemical bonds.

Keywords: X-ray photoelectron spectroscopy; graphene oxide; alumina oxide; composite

Полный текст:

PDF (English)

Литература


Abyzov A. M. Aluminum Oxide and Alumina Ceramics (Review). Part 2. Foreign Manufacturers of Alumina Ceramics. Technologies and Research in the Field of Alumina Ceramics, Refractories and Industrial Ceramics, 2019, vol. 60, pp. 33–42. doi: 10.1007/s11148-019-00305-1.

Centeno A., Rocha V. G., Alonso B., Fernández A., Gutierrez-Gonzalez C. F., Torrecillas R., , Zurutuza A. Graphene for tough and electroconductive alumina ceramics J. Eur. Ceram. Soc., 2013, vol. 33, pp. 3201-3210. doi: 10.1016/j.jeurceramsoc.2013.07.007.

Porwal S., Grasso S, Reece M.J. Review of graphene–ceramic matrix composites. Adv. Appl. Ceram., 2013, vol. 112, no. 8, pp. 443–454. doi: 10.1179/174367613X13764308970581.

Jankovsky O., Simek P., Sedmidubsky D., Huber S., Pumera M., Sofer Z. Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3-graphene. RSC Advances, 2014, vol. 4, no. 15, pp. 7418–7424. doi: 10.1039/C3RA45069D.

Meng F., Li J., Cushing S. K., Bright J., Zhi M., Rowley J. D., Hong Z., Manivannan A., Bristow A. D., Wu N. Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal., 2013, vol. 3, no. 4. pp. 746–751. doi: 10.1021/cs300740e.

Wang H., Cui L.-F., Yang Y., Casalongue H.S., Robinson J. T., Liang Y., Cui Y., Dai H.. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010. vol. 132, no. 40. pp. 13978–13980. doi: 10.1021/ja105296a.

Yan J., Fan Z., Wei T., Qian W., Zhang M., Wei F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 2010, vol. 48, pp. 3825–3833. doi: 10.1016/j.carbon.2010.06.047.

Zaaba N. I., Foo K. L., Hashim U., Tan S. J., Liu W.-W., Voon C. H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 2017, vol. 184, pp. 469-477. doi: 10.1016/j.proeng.2017.04.118.

Shin J.-H., Hong S.-H. Fabrication and Properties of Reduced Graphene Oxide Reinforced Yttria-Stabilized Zirconia Composite Ceramics. J..Eur. Ceram. Soc., 2014, vol.34, no. 5. pp. 1297–1302. doi: 10.1016/j.jeurceramsoc.2013.11.034.

Fernández-García L., Suárez M., Menéndez J., Pecharromán C., Menéndez R., Santamaría R. Dielectric behavior of ceramic–graphene composites around the percolation threshold. Nanoscale Res. Lett. 2015, vol.10, no. 216. doi: 10.1186/s11671-015-0921-4.

Liu F.C., Dong P., Lu W., Sun K. On formation of Al-O-C bonds at aluminum/polyamide joint interface. Appl. Surf. Sci., 2019, vol. 466, pp. 202-209. doi: 10.1016/j.apsusc.2018.10.024.

Perevalov T. V., Shaposhnikov A. V., Gritsenko V. A., Wong H., Han J. H., Kim C. W. Electronic Structure of a-Al2O3: Ab Initio Simulations and Comparison with Experiment. JETP Letters. 2007, vol. 85, pp. 165–168. doi: 10.1134/S0021364007030071.




DOI: https://doi.org/10.15826/analitika.2024.28.1.006

Ссылки

  • На текущий момент ссылки отсутствуют.