Изображение на обложке

Входная ионная оптика квадрупольных масс-спектрометров с индуктивно связанной плазмой. Часть 4. Асимметричные системы с угловым отклонением ионов

V. T. Surikov

Аннотация


Систематизированы литературные и другие сведения о входной ионной оптике квадрупольных масс-спектрометров с индуктивно связанной плазмой. Данная часть обзора посвящена накопившимся к настоящему времени асимметричным системам, предназначенным для углового смещения подлежащего анализу потока ионов плазмы, а также особенностям сопутствующих устройств и деталей. Интерес к такой оптике первыми проявили следующие зарубежные приборостроители: Hitachi Ltd, Shimadzu Corp, университет штата Айова (США), Seiko Instruments Inc., Hewlett-Packard, Varian, Bruker, Analytik Jena, PerkinElmer, Thermo Fisher Scientific, Expec Technology (Focused Fotonics Inc). Часть из них (меньшинство) ограничились проектным предложением, патентованием, а иногда экспериментальной апробацией соответствующих идей. Другие довели свои проекты до серийного производства cпектрометров с различными дефлекторами, достойных признания среди пользователей. Рассмотрены новизна (приоритет), разнообразие устройств использованных дефлекторов, принцип их действия, достоинства и недостатки. Наибольшее внимание производителей серийных спектрометров досталось ионному зеркалу (Varian, Bruker, Analytik Jena) и поперечному квадруполю (Seiko Instr. Inc, PerkinElmer). Более короткая история досталась появившемуся позднее дефлектору Thermo Fisher и Expec Technol. Рассмотрены также новые индуктор, устройства помехоподавления, использование диаграммы Матье, измерение размерного спектра индивидуальных наночастиц.

Ключевые слова: масс-спектрометрия с индуктивно связанной плазмой, асимметричная ионная оптика, дефлекторы углового отклонения ионов, новые помехоподавляющие устройства, регистрация размера наночастиц.


Полный текст:

PDF

Литература


REFERENCES

Surikov V.T. [Beginning of history of mass-spectrometry with inductively coupled plasma. First experimental and serial spectrometers]. Analitika i kontrol’ [Analitics and Control], 2002, vol. 6, no. 3, pp. 323-334 (in Russian).

Surikov V.T., Pupushev A.A. [Input ion optics of inductively coupled plasma. Part 1. Systems with cylinder symmetry and straiht-line axis] Analitika i kontrol’ [Analitics and Control], 2011, vol. 15, no. 3, pp. 256-280 (in Russian).

Surikov V.T., Pupushev A.A. [Evolution of ion optics of quadrupole mass-spectrometers with inductively couplrd plasma. Part 1. Systems with cylinder symmetry and straiht-line axis]. Problemy spectroskopii i spectrometrii. Mezhvuz. sb. nauchn. tr. [Problems of spectroscopy and spectriometry. Interuniversity proc. of scientif. papers]. Ekaterinburg, USTU-UPI, 2005, no. 20, pp. 97-124 (in Russian).

Surikov V.T., Pupushev A.A. Vhodnaya ionnaya optika kvadrupolnyh mass-spektrometrov s induktivno svyazannoy plazmoy i ee evolyutsiya [Input ion optics of quadrupole mass-spectrometers with inductively coupled plasma and her evolution] Dep in VINITI. 26.10.2005. № 1368-В2005. USTU-UPI-ISSC IB RAS. 59 p. (in Russian).

Surikov V.T., Pupushev A.A. [Evolution of ion optics of quadrupole mass-spectrometers with inductively coupled plasma. Part 2 System with curved axis] Problemy spectroskopii i spectrometrii. Mezhvuz. sb. nauchn. tr. Ekaterinburg [Problems of spectroscopy and spectrometry. Interuniversity proc. of scientif. papers] Ekaterinburg, USTU-UPI, 2005, no. 20. pp. 25-104 (in Russian).

Surikov V.T., Pupushev A.A. [Input ion optics of inductively coupled plasma. Part 2. Asymmetrical system with parallel (off-axis) shift of ions]. Analitika i kontrol’ [Analitics and Control], 2014, vol. 18, no. 3, pp. 216-250. doi: 10.15826/analitika.2014.18.3.001 (in Russian).

Surikov V.T. [Input ion optics of quadrupole mass-spectrometers with inductively couplel plasma. Part 3. Asimmetrical systems with local arc-shaped ion deflection] Analitika i kontrol’ [Analitica and Control], 2015, vol. 19, no. 2, pp. 104-114. doi: 10.15826/analitika.2015.19.2.007 (in Russian).

Sysoev A.A., Chupakhin M.S. Vvedenie v mass-spectrometriyu [Introduction in mass-spectrometry]. Мoscow: Atomizdat. 1977. 304 p (in Russian).

Trace analysis by mass spectrometry. Ed.: A.J. Ahearn. N.Y.: Academic Press. 1972. 460 p.

Farley J.W. Simple electrostatic quadrupole ion beam deflector. Rev. Sci. Instrum., 1985, vol. 56, no. 9, pp. 1834-1835. doi: 10.1063/1.1138105.

Zeman H.D. Deflection of an ion beam in the two-dimension electrostatic quadrupole field. Rev. Sci. Instrum., 1977, vol. 48, no. 8, pp. 1079-1085. doi: 10.1063/1.1135188.

Huber B.A., Miller T.M, Cosby P.C., Zeman H.D., Leon R.L., Moseley J.T., Peterson J.R. Laser-ion coaxial beams spectrometer. Rev. Sci. Instrum., 1977, vol. 48, no. 10, pp. 1306-1313. doi: 10.1063/1.1134871.

Brubaker W.M. Multipole mass filter. Patent US, no. 3410997 A1, 1968.

Brubaker W.M. Mass analyzer having series aligned curvilinear and rectilinear analyzer section. Patent US, no. 3473020 A1, 1969.

Syka J.E.P. Mass spectrometer. Patent Appl. EP, no.0237259 A2, 1987.

Okamoto Y. Plasma ion source mass spectrometer for trace elements. Patent US, no. 5049739, 1991.

Takeshi I. ICP analyzer. Patent JP, no. 9318541, 1997.

Inductively coupled plasma mass spectrometry. Ed.: A. Montaser. N.Y.: Wiley&Sons. 1998. 992 p.

Warren A.R., Allen L.A., Pang H.-M., Houk R.S., Janghorbany M. Simultaneous measurements of ion ratios by inductively coupled plasma-mass spectrometry with a twin-quadrupole instrument. Appl. Spectrosc., 1994, vol. 48, no. 11, pp. 1360-1366. doi: 10.1366/0003702944027958.

Warren A.R. Simultaneous measurement of ion ratios by inductively coupled plasma-mass spectrometry with a twin quadrupole instrument. PhD Thesis. Iowa State University, Ames, USA. 1996. 103 p.

Allen L.A. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation and monodisperse dried microparticulate injection. PhD Thesis. Iowa State University, Ames, USA. 1996. 98 p.

Allen L.A., Leach J.J., Pang H.-M., Houk R.S. Precise measurement of ion ratios in solid samples using laser ablation with a twin quadrupole inductively coupled plasma mass spectrometer. J. Anal. At. Spectrom., 1997, vol. 12, no. 2, pp. 171-176. doi: 10.1039/A603310E.

Luong E.T., Houk R.S. Determination of carbon isotope ratios in amino acids, proteins, and oligosaccharides by inductively coupled plasma-mass spectrometry. J. Am. Soc. Mass Spectrom., 2003, vol. 14, pp. 295-301. doi: 10.1016/S1044-0305(03)00003-5.

Allen L.A., Leach J.J., Houk R.S. Spatial location of the space charge effect in in individual clouds using dried microparticulate injection with a twin quadrupole inductively coupled plasma mass spectrometer. Anal. Chem., 1997, vol. 69, no. 13, pp. 2384-2391. doi: 10.1021/ac9610624.

Surikov V.T., Pupushev А.А. [Introduction of samples into inductively coupled plasma for spectrometric analysis]. Analitika i kontrol’ [Analitica and Control], 2006, vol. 10, no. 2, pp. 112-125 (in Russian).

Potter D. A commercial perspective on the growth and development of the quadrupole ICP-MS market. J. Anal. At. Spectrom., 2008, vol. 23, no. 5, pp. 690-693. doi: 10.1039/B717322A.

Sushida K. Development of ICP-MS and its applications to ultra-trace elemental analysis of semiconductor material. J. Mass Spectrom. Soc. Japan., 1997, vol. 45, no. 2, pp. 159-174.

Shabani M.B., Shiina Y., Kirscht F.G., Shimanuki Y. Recent advanced applications of AAS and ICP-MS in the semiconductor industry. Mater. Sci. Engineering: B, 2003, vol. 102, no. 1-3, pp. 238-246. doi: 10.1016/S0921-5107(02)00739-0.

Ito T., Nakagawa Y. Plasma ion source mass analyzing apparatus. Pаtent US, no. 5559337, 1996.

Ito T., Nakagawa Y. Plasma ion source mass spectrometer. Patent US, no. 5773823, 1998.

Nakagawa Y. Plasma ion source mass analyzer. Patent US, no. 5804821, 1998.

Takada S., Nakagawa Y. Plasma ion mass analyzing apparatus Patent US, no. 6031379, 2000.

Inorganic mass spectrometry. Fundamentals and applications. Eds.: Barshick C.M., Duckworth D.C., Smith D.H. New York: Marcel Dekker, Inc. 2000. 517 p.

Hashimoto Y., Nabeshima T., Takada Y., Sakairi M., Tsukada M. Mass spectrometer. Patent US, no. 6423965 B1, 2002.

Takada Y., Terui Y., Yoshinari K., Nabeshima T., Sakairi M. Mass spectrometer. Patent US, no. 6541769 B1, 2003.

Yamada N., Sakata K., Nawa S. Inductively coupled plasma mass spectroscopic apparatus. Patent US, no. 5939718, 1999.

Kalinitchenko I. Ion optical system for a mass spectrometer. Patent appl., no. 2000/17909 A1 WO, 2000.

Kalinitchenko I. Ion optical system for a mass spectrometer. Patent appl., no. 1999/61815 B2 AU, 2000.

Kalinitchenko I. Ion optical system for a mass spectrometer. Patent AU no. 750860, 2002.

Kalinitchenko I. Ion optical system for a mass spectrometer. Patent US, no. 6614021 B1, 2003.

Kalinitchenko I. Mass spectrometer including a quadrupole mass analyzer arrangement. Patent appl., no. 2001/091159 A1 WO, 2001.

Kalinitchenko I. Mass spectrometer including a quadrupole mass analyzer arrangement. Patent EP, no. 1247289, 2002.

Kalinitchenko I. Mass spectrometer including a quadrupole mass analyzer arrangement. Patent appl. US, no. 2003/0155496 A1, 2003.

Kalinitchenko I. Mass spectrometer including a quadrupole mass analyzer arrangement. Patent US, no. 6762407 B2, 2004.

Kalinitchenko I. Apparatus and method for elemental mass spectrometry. Patent CA, no. 2460204 A1, 2003.

Kalinitchenko I. Apparatus and method for elemental mass spectrometry. Patent appl., no. 2003/023815 A1 WO, 2003.

Kalinitchenko I. Apparatus and method for elemental mass spectrometry. Patent appl. US, no. 2005/0199795 A1, 2005.

Kalinitchenko I. Apparatus and method for elemental mass spectrometry. Patent US, no. 7038199 B2, 2006.

Kalinitchenko I. Plasma mass spectrometer. Patent appl. US, 2005/0082471 A1, 2005.

Kalinitchenko I. Plasma mass spectrometer. . Patent US, no. 7119330 B2, 2006.

Kalinitchenko I. Mass spectrometry apparatus and method. Patent WO, no. 2004/012223 A1, 2004.

Kalinitchenko I. Mass spectrometry apparatus and method. Patent Appl. US, no. 2005/0269506 A1, 2005.

Kalinitchenko I. Mass spectrometry apparatus and method. Patent US, no. 7329863 B2, 2008.

Kalinitchenko I. New ICP-MS system. ICP Inf. Newslett., 2003, vol. 28, p. 782.

Eliott S., Knowles M., Kalinitchenko I. A new direction in ICP-MS system. Spectrosc., 2004, vol. 19. no. 1, pp. 30-38.

Eliott S., Knowles M., Kalinitchenko I. A change in direction in ICP-MS // Amer. Lab. March 2004. P. 24-29.

Kalinitchenko I., Sturman B. High-sensitivity ICP-MS. Chem. Australia, 2004. vol. 71, no. 3, pp. 18-20.

Varian ICP-MS spectrometer. Pre-installation manual. 2004, no. 1. 48 p.

Introduction to the Varian ICP-MS. [Электронный ресурс]: cma.tcd.ie/misc/icp.ppt (дата обращения 20.04.2017).

Thomas R. Practical guide to ICP-MS. A tutorial for beginners. 2nd edition. CRC press. 2008. 376 p.

Becker J.S. Inorganic mass spectrometry. Principles and applications. Chichester: Wiley, 2007. 496 p.

Varian 810/820-MS ICP mass spectrometers. Pre-installation manual. 2007, no. 3. 52 p.

Kalinitchenko I., Wang XueDong, Sturman B. Simple and effective control of spectral overlap interferences in ICP-MS. Spectroscopy. Special issue, 2008. Oct. 1.

Epov V.N., Evans R.D., Zheng J., Donard O.F.X., Yamada M. Rapid fingerprinting of 239Pu and 240Pu in environmental samples with high U level using on-line ion chromatography coupled with high-sensitivity quadrupole ICP-MS detection. J. Anal. At. Spectrom., 2007, vol. 22, no. 9. pp. 1131-1137. doi: 10.1039/b704901c.

Brouwers E.E.M. Inductively coupled plasma mass spectrometry: a unique, ultrasensitive tool for exploring the pharmacology of metal-based anticancer agents. PhD Thesis. The Nedherlands Cancer Inst., Amsterdam, 2007. 264 p.

Shaulis B., Lapen T.J., Toms A. Signal linearity of an extended range pulse counting detector: application to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS. Geochem., Geophys., Geosyst., 2010, vol. 11, no. 11, pp. 1-12. doi: 10.1029/2010GC003198.

Xing L., Beauchemin D. Chromium speciation at the trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom., 2010, vol. 25, no. 7, pp. 1046-1055. doi: 10.1039/c004699j.

Pereira C.D., Garcia E.E., Silva F.V., Nogueira A.R.A., Nobrega A. Behavior of arsenic and selenium in an ICP-QMS with collision and reaction interface. J. Anal. At. Spectrom., 2010, vol. 25, pp. 1763-1769.

Li R., Vogel E., Krähenbühl U. Measurement of I-129 in environmental samples by ICP-CRI-MS: possibilities and limitations. Radiochim. Acta., 2009, vol. 97, pp. 453-458. doi: 10.1524/ract.2009.1639.

Salazar R.F.S. Nunes M.A.G., DresslerV.L., Flores E.M.M., Nobrega J.A. Behavior of chromium and vanadium in ICP-QMS with dynamic reaction cell or collision-reaction interface. Colloquium Spectrosc. Internationale XXXVII. Brazil. 2011. TU46.

Salazar R.F.S., Guerra M.B.B., Pereira-Filho E.R., Nόbrega J.A. Performance evaluation of collision-reaction interface and unternal standardization in quadrupole ICP-MS measurements. Talanta, 2011, vol. 86, pp. 241-247. doi: 10.1016/j.talanta.2011.09.009.

Fialho L.L., Pereira C.D., Nobrega J.A. Combination of cool plasma and collision-reaction interface for correction polyatomic interferences on copper signals in inductively coupled plasma quadrupole mass spectrometry. Spectrochim. Acta. Part B, 2011, vol. 66, no. 5, pp. 389-393. doi: 10.1016/j.sab.2011.04.001.

Althobiti R. Risk assessment of arsenic in Arabic area rice using on-line leaching and speciation analysis by ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. Master of Sci. Thesis. Queen’s university. Kingston, Ontario, Canada. 2014. 76 р.

Donati G.L., Amais R.S., Nobrega J.A. Strategie to improve accuracy and sensitivity in phosphorus determination by inductively coupled plasma quadrupole mass spectrometry. J. Braz. Chem. Soc., 2012, vol. 23, no. 4, pp. 786-791.

Amais R.S., Donati G.L., Nobrega J.A. Interference standard applied to sulfur determination in biodiesel microemulsions by ICP-MS. J. Braz. Chem. Soc., 2012, vol. 23, no. 5, pp. 797-803.

Neves D.R., Amais R.S., Nobrega J.A., Neto J.A.G. Assessment of polyatomic interferences elimination using a collision reaction interface (CRI) for inorganic analysis of fuel ethanol by ICP-MS. Anal. Lett., 2012, vol. 45, no. 9, pp. 1111-1124. doi: 10.1080/00032719.2012.670793.

Bianchi S.R., Amais R.S., Pereira C.D., Salazar R.F.S., Nobrega J.A., Nogueira A.R.A. Evaluation of a collision-reaction interface (CRI) for carbon effect correction on chromium determination in environmental samples by ICP-MS. Anal. Lett., 2012, vol. 45, no. 18, pp. 2845-2855. doi: 10.1080/00032719.2012.702176.

Olufson K.P., Moran G. Polyatomic interference removal using a collision reaction interface for plutonium determination in the femtogram range by quadrupole ICP-MS. J. Radioact. Nucl. Chem., 2016, vol. 308, no. 2, pp. 639-647. doi 10.1007/s10967-015-4483-9.

Bianchi S.R., Amaral C.D.B., Silva C.S., Nogueira A.R.A. Determination of selenium in bovine semen by ICP-MS using formic acid for sample preparation. J. Braz. Chem. Soc., 2017, vol. 28, no. 12, pp. 2359-2364. doi: 10.21577/0103-5053.20170089.

Тhomas R. Measuring elemental impurities in pharmaceuticals. A practical guide. CRC Press Taylor&Francis Group. 2018. 502 p.

Edmund A.J., Bergeson S.D., Lyan M., Taylor N., Kalinitchenko I., Farnsworth P.B. Evaluation of space charge effects in the second vacuum stage of a commercial inductively coupled plasma mass spectrometer by planar laser-induced fluorescence imaging. Spectrochim. Acta. Part B, 2012, vol. 76, pp. 109-118. doi: 10.1016/j.sab.2012.06.028.

Mallet A.I., Down S. Dictionary of mass spectrometry. John Wiley&Sons Ltd, 2009. 188 p.

Dawson P.H. (ed.) Quadrupole mass spectrometry and its applications. Amsterdam. Elsevier, 1976. 355 p.

Kuzmin A.F. Uluchenie harakteristik analiticheskogo kvadrupolnogo mass-analizatora pri rabote s ionami nizkhih energy bez primeneniya predfilnrov [Improvement of characteristics of analytic quadrupole mass-analyzer at work with low energy ions without use of prefilters. Nauchnoe priborostroenie [Scientific. Instrumentation], 2011, vol. 21, no. 4. p. 60-64 (in Russian).

Inductively coupled plasma mass spectrometry handbook Ed.: S.M. Nelms. Oxford: Blackwell Publishing Ltd, 2005. 486 p.

May T.W., Wiedmeyer R.H. A table of polyatomic interferences in ICP-MS. Atom. Spectrosc., 1998, vol. 19, no. 5, pp. 150-155.

Pupushev A.A., Epova E.N. Spectralnye pomehi poliatomyh ionov v methode mass-spectrometrii s inductivno svyazannoy plasmoy [Spectral interferences in method mass-spectrometry with inductively coupled plasma] Analitika I kontril’ [Analitica and Control], 2001, vol. 5, no. 4, pp. 335-369 (in Russian).

Praphairaksit N., Houk R.S. Attenuation of matrix effects in inductively coupled plasma mass spectrometry with a supplemental electron source inside of the skimmer. Anal. Chem., 2000, vol. 72, no. 11. pp. 2351-2355. doi: 10.1021/ac000150s.

Praphairaksit N., Houk R.S. Reduction of space charge effects in inductively coupled plasma mass spectrometry using a supplemental electron source inside the skimmer: ion transmission and mass spectral characteristics. Anal. Chem., 2000, vol. 72, no. 11, pp. 2356-2361. doi: 10.1021/ac000159u.

Praphairaksit N. Development and evaluation of an externally air-cooled low-flow torch and the attenuation of space charge and matrix effects in inductively couple plasma mass spectrometry. PhD Thesis. Iowa State University, Ames, USA, 2000. 112 p.

Houk R.S., Praphairaksit N. Mass-spectrometer with electron source for reduction of space charge effects in sample beam. Patent US, no. 6633114 B1, 2003.

Praphairaksit N., Houk R.S. Reduction of mass bias and matrix effects in inductively coupled plasma mass spectrometry with a supplemental electron source in a negative extraction lens. Anal. Chem., 2000, vol. 72, no. 18, pp. 4435-4440. doi: 10.1021/ac000590j.

Raizer Yu.P. Phisika gazovogo razryada [Physics of gas discharge]. Мoscow, Science, 1987. 592 p. (in Russian).

Mitsui Y., Shimura S., Komoda T. Plasma ion source mass spectrometer. Patent US, no. 4948962, 1990.

Ingle C.P., Appelblad P.K., Dexter M.A., Reid H.J., Sharp B.L. The use of background ions and a multivariate approach to characterize and optimize the dominant H2-based chemistries in a hexapole collision cell usedinICP-MS. J. Anal. Atom. Spectrom., 2001, vol. 16, no. 9, pp. 1076-1084.

Stresau D., Hunter K.L. Ion counting beyond 10 GHz using a new detector and conventional electronics (ETP electron multipliers, SGE, Australia). Presented at Europ. Winter Conf. Plasma Spectrochem. (EWCPS2001). Lillehammer, Norway, 2001. 3 p.

Hamester M., Toms A., Chemnitzer R. High-sensitivity ICP-MS: overcome the problem of complex samples. Available at: https://chemistry.unt.edu/~verbeck/LIMS/Manuals/820_tutorial.pdf (accessed 30 April 2017).

Bruker Aurora M90 ICP-MS product video. Available at: https://www.youtube.com/watch?v=mCgCqqNxa80 (accessed 15 July 2017).

Hamester M., Chemnitzer R. The advantage of high sensitivity ICP-MS. European Winter Conf. on plasma spectrochemistry (EWCPS2013). Krakow, Poland, 2013. Available at: https//ll1.workcast.net/10078/8054287822318991/Documents/Meike-_Rene%20mergedv4.pdf (accessed 24 may 2017).

Jakobs J.L. Diagnostic studie of ion beam formation in inductively coupled plasma mass spectrometry with the collision reaction interface. PhD Diss. Iowa State University, Ames, USA. 2015. 137 p.

Kalinitchenko I. Mass spectrometry. Patent Appl. US, no. 2013/0248701 A1,2013.

Kalinitchenko I. Mass spectrometry apparatus. Patent Appl. US, no. 2013/0292565 A1, 2013.

Kalinitchenko I. Improvements in or relating to mass spectrometry. Patent EP, no. 2774170 A1, 2014.

Kalinitchenko I. Improvements in or relating to mass spectrometry. Patent Appl. US, no. 2014/0312243 A1, 2014.

Kalinitchenko I. Mass spectrometry. Patent Appl. US, no. 2014/0319366 A1, 2014.

Kalinitchenko I. Mass spectrometry. Patent US, no. 9048078 B2, 2015.

Kalinitchenko I. Ion deflector for a mass spectrometer. Patent Appl. US, no. 2015/0060687 А1, 2015.

Kalinitchenko I. Ion deflector for a mass spectrometer. Patent US, no. 9159543 A1,2015.

Kalinitchenko I. An ion deflector for a mass spectrometer. Patent EP, no. 2828881 A4, 2015.

Kalinitchenko I. An improved interface for mass spectrometry apparatus. Patent EP, no. 2825871 A1, 2015.

Kalinitchenko I. Interface for mass spectrometry apparatus. Patent Appl. US, no. 2015/0034816 A1, 2015.

Hamester M., Chemnitzer R., Kalinitchenko I., Dalby S. ICP-MS: advancements due to ever-increasing challenges. 7th Nordic Conf. Plasma Spectrochem. Norway, Loen, 2014.p. 25.

Kalinitchenko I., Hosemans S., Zdaril P., Sim J. Development and characterization of a new high sensitivity ICP-MS. Europ. Winter conf. on plasma spectrochem. (EWCPS2015). Münster, Germany, 2015. 26 р.

Lorenz S. Step by step! (Cover story). AJournal (Analytik Jena Staff Magazine), 2014, no. 3, pp. 5-8.

PlasmaQuant MS/Elite. Inductively coupled plasma mass spectrometer. Operation manual. Documentation number 10-5000-002-23. Analytik Jena, 2014. 123 p.

PlasmaQuant MS. The new perspectives in ICP-MS. Analytic Jena AG, 2015. 12 p.

Gordeev K, Shahnovitch I. [Analyticl spectrometry today: from new technologies to new discoveries]. Analitica [Analytics], 2016, 1(26). pp. 36-61 (in Russian).

Gordeev K., Zhohov C. [Mass-spectrometriya today: the latest technologies and equipment]. Analytica [Analytics], 2016, 5 (30), pp. 58-78 (in Russian).

PlasmaQuant MS product animation. Available at: https://www.youtube.com/watch?v=dGb513JRqU0.

ICP-MS Plasma Quant MS. Cone exchange. Available at: http://www.youtube.com/watch?v=XVbbtl3dwus. (accessed 2017).

Kalinitchenko I., Zdaril P. Improved interface for high sensitivity ICP-MS – having ion kinetic energy and matrix suppression control. Europ. Winter conf. on plasma spectrochem. (EWCPS2017). Sankt Anton, Arlberg, Austria, 2017, p. 67.

Pupyshev A., Kalinitchenko I., Weisheit O. ICP-MS matrix suppression cancelation effect after applying the positive voltage to the skimmer cone. Europ. Winter conf. on plasma spectrochem. (EWCPS2017). Sankt Anton, Arlberg, Austria, 2017, p. 215.

Kalinitchenko I. Mass spectrometry apparatus. Patent US, no. 9006646 B2, 2015.

Kalinitchenko I. Mass spectrometry. Patent US, no. 9209006 B2, 2015.

Kalinitchenko I. Electrically connected sample interface for mass specftrometer. Patent US, no. 9202679 B2, 2015.

Kalinitchenko I. Interface for mass spectrometry apparatus. Patent US, no. 9305758, 2016.

Douglas D.J. Method and apparatus for sampling a plasma into a vacuum chamber. Patent CA, no. 1189201, 1985.

Douglas D.J. Method and apparatus for sampling a plasma into a vacuum chamber. Patent US, no. 4501965, 1985.

Douglas D.J., French J.B. An improved interface for inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochim. Acta. Part B, 1986, vol. 41, no. 3, pp. 197-204.

Gray A.L. The evolution of the ICP as an ion source for mass spectrometry. J. Anal. At. Spectrom., 1986, vol. 1, no. 6, pp. 403-405. doi: 10.1039/JA9860100403.

Alavi S., Khayamian T., Mostaghimi J. Conical torch: the next-generation inductively coupled plasma source for spectrochemical analysis. Anal. Chem., 2018, vol. 90, no. 5, pp. 3036-3044. doi: 10.1021/acs.analchem.7b04356.

Tanner S.D. Space charge in ICP-MS: calculations and implications. Spectrochim. Acta. Part B, 1992, vol. 47B, no. 6, pp. 809-823.

Niu H., Houk R.S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochim. Acta. Part B, 1996, vol. 51, pp. 779-815.

Niu H. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry. PhD Diss. Ames, Iowa, USA,1995. 276 p.

Muzgin V.H., Emelyanova N.N., Pupushev A.A. [Mass-sperctrometry with inductively coupled plasma – new method in analytical chemistry] Analitika i control’ [ Analitica and Control], 1998, no. 3-4. pp. 3-25. (in Russian).

Pupushev A.A., Sermyagin B.A. Diskriminatsya ionov po masse pri izotopnom analize metodom mass-spectrometrii s induktivno svyazannoy plasmoy [Dickrimination of ions by mass at isotope analysis using method mass-spectrometry with inductively coupled plasma]. Ekanerinburg, USTU-UPI, 2006. 132 p. (in Russian).

The 30-minute guide to ICP-MS. PerkinElmer Inc., 2004-2011. 8 p. Available at: https://www.perkinelmer.com/CMSResources/images/44_74849tch_icpmsthirtyminutesguide.

Do things the way. NexION 300 ICP-MS. PerkinElmer Inc., 2009. 16 p.

Introducing the NexION 300 ICP-MS. PerkinElmer, 2009. 43 p. Available at: www.perkinelmer.co.kr/NexION Intro.pdf.

NexION 300 ICP-MS. Preparing your lab. PerkinElmer Inc., 2010-2012. 9 p.

NexION 300 ICP-MS instruments animation. Available at: https://www.youtube.com/watch?v=L-FYh2z9mi0.

NexION 300 ICP-MS – the power of three. Available at: http://www.youtube.com/watch?v=15AmxmM1vt0.

NexION 300 system. Hardware guid. PerkinElmer Sciex, 2010. 177 p.

NexION 300 system. Software guid. PerkinElmer Sciex, 2010. 233 p.

Badiei H.R., Bandura D., Baranov V., Kahen K., Tanner S. Inductively coupled plasma mass spectrometer. Patent Appl. US, no. 2011/0253888 A1, 2011.

Badiei H., Kahen K. Multimode cells and methods of using them. Patent US, no. 8426804 B2, 2013.

Badiei H., Kahen K. Multimode cells and methods of using them. Patent Appl. US, no. 2012/0091331 A1, 2012.

Badiei H., Kahen K. Multimode cells and methods of using them. Patent Appl. US, no. 2013/0284917 A1, 2013.

Badiei H., Kahen K. Multimode cells and methods of using them. Patent US, no. 8884217 B2, 2014.

Badiei H.R., Kahen K. Gas delivery system for mass spectrometer reaction and collision cells. Patent Appl. US, no. 2011/0210241 A1, 2011.

Badiei H.R., Kahen K. Gas delivery system for mass spectrometer reaction and collision cells. Patent US, no. 8373117 B2, 2013.

Badiei H., Bandura D., Baranov V., Kahen K., Tanner S. Cone-shaped orifice arrangement for inductively coupled plasma sample introduction system. Patent US, no. 9105457 B2, 2015.

Timofeev P.V. [35 years ICP-MS]. XXV mezhdunar. seminar «Spektrometricheskii analiz. Apparatura obrabotki dannykh na PEVM» [Presentation on XXV international seminar « Spectrometric analysis. Machinery for data processing on a PC»], Obninsk, 2018. 65 с. (in Russian).

Bandura D.R., Baranov V.I., Tanner S.D. Method of operating a mass spectrometer to suppress unwanted ions. Patent US, no. 6627912 B2, 2003.

Optimass 9500 ICP-oTOFMS. GBC publ. number 01-0875-03. Australia, 2006. 16 p.

Tanner S.D., Douglas D.J., Cousins L. Method and apparatus for plasma mass analysis with reduced space charge effects. Patent US, no. 5565679, 1996.

Tanner S.D., Cousins L., Douglas D.J. Reduction of space charge effect using a three-aperture gas dynamic vacuum interface for inductively coupled plasma-mass spectrometry. Appl. Spectrosc., 1994, vol. 48, no. 11, pp. 1367-1372. doi: 10.1366/0003702944028100.

Willinsky B. PerkinElmer to showcase wide range of innovative offerings at Analytica 2014. Available at: http://ir.perkinelmer.com/static-files/cc2da98b-f47b-403f-9ab8-7e00a18d6efb.

Maximize lab efficiency with unparalleled speed & stability. NexION 350. PerkinElmer, 2014-2015. 12 p.

Syngistix nano application software module for single particle ICP-MS. PerkinElmer, 2014-2017. 4 p.

Timofeev P.V. [Element and isotope analysis of single nanoparticles]. XXI Seminar «Spektrometricheskii analiz. Apparatura i obrabotka dannykh na EVM [ICP-MS. XXI seminar «Spectrometric analysis. Machinery for data processing on a PC»], Obninsk, 2014. 11 p. (in Russian).

Frederichsen O., Watson P. NexION FAST FIAS unlimited TDS: direct injection of high (30%) dissolved solid samples. 7th Nordic Conf. Plasma Spectrochim. Norway, Loen, 2014, p. 42.

Van Bussel W. An introduction and overview of FAST-FIAS coupled to the NexION ICP-MS. PerkinElmer, 2016. 7 p.

Nomizu H., Kaneco S., Tanaka T., Yamamoto T., Kawaguchi H. Determination of femto-gram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction. Anal. Sci., 1993, vol. 9, no. 6. pp. 843-846. doi: 10.2116/analsci.9.843.

Laborda F., Bolea E., Jimenez-Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal. Chem., 2014, vol. 86, no. 5, pp. 2270-2278. doi: 10.1021/ac402980q

Olesik J.W., Gray P.J. Consideration of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J. Anal. At. Spectrom., 2012, vol. 27, pp. 1143-1155. doi: 10.1039/c2ja30073g.

Laborda F., Jimenez-Lamana J., Bolea E., Castillo J.R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. Atom. Spectrom., 2013, vol. 28, no. 8, pp. 1220-1232. doi: 10.1039/C3JA50100K.

Salamon A.W. The current world of nanomaterial characterization: discussion of analytical instruments for nanomaterial characterization. Environmental Eng. Sci., 2013, vol. 30, no. 3, pp. 101-108. doi: 10.1089/ees.2012.0330.

Meerman B., Laborda F. Analysis of nanomaterials by field-flow fractionation and single particle ICP-MS. J. Anal. Atom. Spectrom., 2015, vol. 30, pp. 1226-1228. doi: 10.1039/c5ja90019k

Evans E.H., Pisonero J., Smith C.M.M., Taylor R.N. Atomic spectrometry update: review of advances in atomic spectrometry and realated. J. Anal. Atom. Spectrom., 2015, vol. 30, no. 5, pp. 1017-1037. doi: 10.1039/c5ja90017d.

Lee W.-W., Chan W.-T. Calibration of single-particle inductively coupled plasma mass-spectrometry (SP-ICP-MS). J. Anal. Atom. Spectrom., 2015, vol. 30, no. 6, pp. 1245-1254. doi: 10.1039/c4ja00408f.

Montano M.D., Olesik J.W., Barber A.G., Challis K., Ranville J.F. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal. Bioanal. Chem., 2016, vol. 408, no. 19, pp. 5053-5074.

Laborda F., Bolea E., Cepria G., Gomez M.T., Jimenez M.S., Perez-Arantegui J., Castillo J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta., 2016, vol. 904, pp. 10-32. doi: 10.1016/j.aca.2015.11.008.

Nanotechnology insights. PerkinElmer, 2011-2012. 76 p. Available at: http://perkinelmer.co.kr/mail/01/images/2014/nanotechnology.insights.pdf.

Single particle ICP-MS Compendium. PerkinElmer, 2012-2016. 88 p.

Stephan C., Neubauer K. Single particle inductively coupled plasma mass spectrometry: understanding how and why. PerkinElmer, 2014. 5 p.

Stephan C., Thomas R. Single-particle ICP-MS: a key analytical technique for characterizing nanoparticles. Spectrosc., 2017, vol. 32, no. 3, pp. 12-25.

Foglio L., Davidowski L. The determination of lead in calcium-based antacid and dietary supplements using the NexION 300 ICP-MS system to comply with the state of California’s proposition 65 legislation. Atom. Spectrosc., 2010, vol. 31, no. 5, pp. 154-158.

Mangum S.R., Neubauer K.R. Metal impurities in pharmaceuticals and dietary supplements – implementing ICP-MS for USP<232> and prop 65. Atom. Spectrosc., 2010, vol. 31, no. 5, pp. 159-164.

Bass D., Jones D. The determination of trace metals in human urine using the NexION 300 ICP-MS. Atom. Spectrosc., 2010, vol. 31, no. 5, pp. 165-169.

Smith S., Bolchi M., Magarini R. The determination of elements at sub-ppb concentrations in naphta mixtures using the NexION ICP-MS. Atom. Spectrosc., 2010, vol. 31. no. 5, pp. 170-174.

Kantha M.R.V., Pulicharla R., Sumanth P., Venkateswar Rao P., Sudhakar Babu A.M.S. Method validation for determination of heavy metals in phytonadione emulsion (I.M) dosage form by ICP-MS. J. Atoms and Molecules, 2012, vol. 2, no. 6, pp. 425-436.

Tanase Gh., Udristioiu F.M., Bunachiu A.A., Aboul-Enein H.Y. Trace elements analysis in paper using inductively coupled plasma-mass spectrometry (ICP-MS). Gazi University J. Sci., 2012, vol. 25, no. 4, pp. 843-851.

Mitrano D.M., Barber A., Bednar A., Westerhoff P., Higgins C.P., Ranville J.P. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow filed flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom., 2012, vol. 27, no. 7, pp. 1131-1142. doi: 10.1039/c2JA30021D.

Tirez K., Brusten W., Beutels F., Wevers M., Vanhaeske F. Determination of bromate in drinking waters using low pressure liquid chromatography/ICP-MS. J. Anal. At. Spectrom., 2013, vol. 28, no. 12, pp. 1894-1902. doi: 10.1039/C2JA30323J.

Hineman A., Stephan C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom., 2014, vol. 29, no. 7, pp. 1252-1257. doi: 10.1039/c4ja00097h.

Quarles Ir. C.D., Jones D.R., Jarrlett J.M., Shakirova G., Pan Y., Caldwwell L., Jones R.L. Analytical method for total chromium and nickel in urine using an inductively coupled plasma-universal cell technology-mass spectrometer (ICP-UCT-MS) in kinetic energy discrimination (KED) mode. J. Anal. At. Spectrom., 2014, vol. 29, no. 2, pp. 297-303. doi: 10./1039/c3ja50272D

Rossrucker L., Mayrhofer K.J.J., Frankel G.S., Birbilis N. Investigation the real time dissolution of Mg using online analysis by ICP-MS. J. Electrochem. Society, 2014, vol. 161, no. 3, pp. c115-c119. doi: 10.1149/2.064403jes.

Montaño M.D., Badiei H.R., Bazargan S., Ranville J.F. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Envir. Sci.: Nano, 2014, vol. 1, no. 4, pp. 338-346. doi: 10.1039/c4en00058g.

Mwilu S., Siska E., Nazir Baig R.B., Varma R.S., Heithmar E., Rogers K.R. Separation and measurement of silver nanoparticles and silver ions using magnetic particles. Sci. Total Environment., 2014, vol. 472, pp. 316-323. doi: 10.1016/j.scitotenv.2013.10.077.

Cui X.-Y., Li S.-W., Zhang S.-Y., Fan Y.-Y., Ma L.Q. Toxic metals in children’s toys and jewelry: coupling bioaccessibility with risk assessment. Environment. Pollution, 2015, vol. 200, pp. 77-84. doi: 10.1016/j.envpol.2015.01.035.

Mazurova I., Khwashevskaya A., Guseva N. The choice of conditions for the determination of vanadium, chromium and arsenic concentration in water by ICP-MS using collision mode. Procedia Chem., 2015, vol. 15, pp. 201-205. doi: 10.1016/j.proche.2015.10.032.

He M., Jin Z., Luo C., Deng L., Xiao J., Zhang F. Determination of boron isotope ratios in tooth enamel by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation bt ion exchange chromatography. J. Bazil. Chem. Soc., 2015, vol. 26, no. 5, pp. 949-954. doi: 10.5935/0103-5053.20150056.

Hinchliffe D.J., Condon B.D., Thyssen G., Naoumkina M., Madison C.A., Reynolds M., Delhom C.D., Fan D.D., Li P., McCarty J. The GhTT2-AT gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres. J. Experiment. Botany., 2016, vol. 67, no. 18, pp. 5461-5471. doi; 10.1093/jxb/erw312.

Bao D., Oh Z.C., Chen Z. Characterization of silver nanoparticles internalized by Arabidopsis Plant using single particle ICP-MS analysis. Frontiers Plant Sci., 2016, vol. 7, article 32. doi: 10.3389/fpls.2016.00032.

Avramescu M.-L., Rasmussen P.E., Chenier M. Determination of metal impurities in carbon nanotubes sampled using surface wipes. J. Analyt. Methods. Chem., 2016, article 3834262. doi: 10.1155/2016/3834292.

Al-Asmari A.K., Kunnathodi F., Saadon K.A., Idris M.M. Elemental analysis of scorpion venoms. J. Venom Res., 2016. vol. 7. pp. 16-20.

Zaitseva M.V., Pupushev A.A., Shchapova Yu.V., Votyakov C.L. [Dating of U-Pb zircon with help of quadrupole mass-specrtometr with inductively coupled plasma NexION 300S and attachment for laser ablation NWR 2013]. Analitika i kontro’l [Analitica and Control], 2016, vol. 20. no. 4. pp. 294-306. doi: 10.15826/analitika.2016.20.4.006. (in Russian).

Canabate A., Garcia-Ruiz E., Resano M., Todoli J.-L. Analysis of whole blood by ICP-MS equipped with a high temperature total sample concumption system. J. Anal. At. Spectrom., 2017, vol. 32, no. 1, pp. 78-87. doi: 10.1039/cbja00374e.

Croudace I.W., Russell B.C., Warwick P.W. Plasma source mass spectrometry for radioactive waste characterization in support of nuclear decommissioning: a review. J. Anal. Atom. Spectrom., 2017, vol. 32, no. 3, pp. 494-526. doi: 10.1039/C6JA00334F.

Oliveira L.H.B., Ferreira N.S., Oliveira A., Nogueira A.R.A., Gonzalez M.H. Evaluation of distribution and bioaccumulation of arsenic by ICP-MS in Tilapia (Oreochromis niloticus) cultivated in different environments. J. Braz. Chem. Soc., 2017, vol. 28, no. 12, pp. 2455-2463. doi:10.21577/0103-5053.20170101.

Petuchov V.I., Dmitriev E.V., Baumane L.Kh., Skalny A.V., Lobanova Yu.N., Grabeklis A.R. Some aspects of regulatory criteria for metal-ligand homeostasis in epidermal cell. J. Antioxidant Activity., 2018, vol. 1, no. 3, pp. 22-32. doi: 10.14302/issn.2471-2140.jaa-17-1927.

Air, water and soil analysis. Environmental application compendium. PerkinElmer, 011824¬_01, 2009-2015. 329 p.

Zhung Q., Snow J.T., Holdship P., Price D., Watson P., Rickaby R.E.M. Direct measurements of multi-elements in high matrix samples with a flow injection ICP-MS: application to the extended Emiliana Huxley redfiled ratio. J. Anal. At. Spectrom., 2018, vol. 33, no. 7, pp. 1196-1208. doi: 10.1039/c8ja.00031D.

Stephan C., Wilkinson K.J., Hadioui M. Single particle ICP-MS (SP-ICP-MS) for the detection of metal-based nanoparticles in environmental matrices: application to silver nanoparticles in surface water. Nanoscience and nanometrology, 2015, vol. 1, no. 1, pp. 20-23. doi: 10.11648/j.nsnm.20150101.14.

Witzler M., Küllmer F., Hirtz A., Günter K. Validation of gold and silver nanoparticle analysis in fruit juices by single-particle ICP-MS without sample pretreatment. Agricultu. Food Chem., 2016. doi: 10.1021/asc.jafc.6b01248.

Hanousek O., Brunner M., Pröfrock D., Irrgeher J., Prohaska T. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements. Anal. Methods., 2016, vol. 8, no. 42, pp. 7661-7672. doi: 10.1039/cbay02177h.

Aznar R., Barahona F., Geiss O., Ponti J., Luis T.J., Battero-Moreno J. Quantification and size characterization of silver nanoparticles in environmental aquous samples and consumer products by single particle ICP-MS. Talanta, 2017, vol. 175, pp. 200-208. doi: 10.1016/j.talanta.2017.07.048.

Kalomista I., Keri A., Ungor D., Csapo E., Dekany I., Prochaska T., Galbacs G. Dimensional chatacterization of gold nanorods by combining millisecond and microsecond temporal resolution single particle ICP-MS measurementws. J. Anal. Atom. Spectrom., 2017, vol. 32, pp. 2455-2462. doi: 10.1039/c7ja00306d.

Piccoli E., Mazzilis D., Gava E., De Martin S. Study of nanoparticles in a few rivers in no.rth East Italy using SP-ICP-MS. Nano Research&Applications, 2018, vol. 4, no. 1, pp. 1-5. doi: 10.2767/2471-9838.100030.

Li G. Determination of trace elements levels in human plasma and radiated mice tongue by inductively coupled plasma-mass spectrometry (ICP-MS). PhD Diss. University of Missouri, USA, 2012. 153 p.

Mitrano D.M. Development of ICP-MS based nanometrology techniques for characterization of silver nanoparticles in environmental systems. PhD Thesis. Colorado School of mines, 2012. 197 p.

Tirez K. Development of methods based on ICP-mass spectrometry for the determination, speciation and isotopic analysis of metals and oxy-anions in an environmental context. Doctor of Sci.: Chemistry Diss. Gent University, 2013. 248 p.

Gschwind S.C. Development and evaluation of discrete sample introduction systems for nanoparticle analysis by ICP-MS. Doctor of Science Thesis. ETH Zurich, Germany, 2014. 171 p.

Furtado L. Fate of silver nanoparticles in lake mesocosms. Master of Science Thesis. Trent University, Peterborough, Ontario, Canada, 2014. 141 p.

Montano D.M. Studies into the detection, characterization and behavier of naturally occurring and engineered inorganic nanorarticles. PhD Thesis. Colorado school of mines, 2014. 158 p.

Donovan A.R. Traking silver, gold, and titanium dioxide nanoparticles through drinking water systems by single particle-inductively coupled plasma-mass spectrometry. Master of Science Thesis. Missouri University, USA, 2016. 42 p.

Elci S.G. Gold nanoparticle biodistributions and stability in vivo from mass spectrometric imaging. PhD Diss. University of Massachusetts. Amherst, USA, 2017. 143 p.

Varonina S. Determination of REEs, Th and U in seawater after off-line SPE by ICP-MS. Master´s degree in chemistry Thesis. University Oslo, Norway, 2017. 197 p.

High L. PerkiElmer´s NexION 2000 ICP-MS provides industry-leading versatility for trace elemental analyses. PKI_News_2017_1_23_Press_Releases. PerkinElmer. 2017. 1 p.

Timofeev P.V. Presentation of ICP-MS PerkinElmer spectrometer NexION 2000. 65 p. Available at: https://www.youtube.com/watch?v=RwVfLyjTkSY. (in Russian).

Badiei H., Beres S.A. Detectors and methods of using them. Patent Appl. US, no. 2015/0162174 A1, 2015.

Badiei H., Beres S.A. Detectors and methods of using them. Patent Appl. US, no. 2016/0379809 A1, 2016.

Badiei H., Beres S.A. Detectors and methods of using them. Patent US, no. 9847214 B2, 2017.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent Appl. US, no. 2015/0136966 A1, 2015.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent US, no. 9190253 B2, 2015.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent US, no. 9589780 B2, 2017.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent Appl. US, no. 2016/0172176 A1, 2016.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent Appl. US, no. 2017/0301528 A1, 2017.

Badiei H., Bazargan S. Systems and methods of suppressing unwanted ions. Patent US, no. 9916971 B2, 2018.

Badiei H., Neubauer K. Systems and methods for detection and quantification of selenium and silicon in samples. Patent Appl. US, no. 2015/0318159 A1, 2015.

Badiei H., Neubauer K. Systems and methods for detection and quantification of selenium and silicon in samples. Patent US, no. 9922810 B2, 2018.

Badiei H., Neubauer K. Systems and methods for detection and quantification of selenium and silicon in samples. Patent Appl. US, no. 2018/0144919 A1, 2018.

Badiei H., Neubauer K. Systems and methods for detection and quantification of selenium and silicon in samples. Patent US, no. 10573503 B2, 2020.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using them. Patent Appl. US, no. 2015/0108898 A1, 2015.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using them. Patent WO, no. 2015/061391 A2,2015.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using them. Patent US, no. 9420679 B2, 2016.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using them. Patent US, no. 9648717 B2,2017.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using themPatent Appl. US, no. 2017/0055337 A1, 2017.

/ Cheung T.S., Wong C.H.C. Hybrid generators and methods of using them Patent Appl. US, no. 2018/0027643 A1, 2018.

Cheung T.S., Wong C.H.C. Hybrid generators and methods of using themPatent US, no. 9942974 B2, 2018.

Cheung T.S., Wong C.H.C. Qscillator generators and methods of using them. Patent US, no. 9635750 B2, 2017.

Cheung T.S., Wong C.H.C. Qscillator generators and methods of using them. Patent Appl. US, no. 2016/0360602 A1, 2016.

Cheung T.S., Wong C.H.C. Qscillator generators and methods of using them. Patent Appl. US, no. 2017/0339775 A1, 2017.

Cheung T.S., Wong C.H.C. Oscillator generators and methods of using them. Patent US, no. 10104754 B2, 2018.

Cheung T.S., Wong C.H.C. Capacitors and radio frequency generators and other devices using them. Patent Appl. US, no. 2018/0144922 A1, 2018.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent US, no. 9433073 B2, 2016.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent Appl. US, no. 2015/0216027 A1, 2015.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent Appl. US, no. 2016/0309572 A1,2016.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent US, no. 9591737 B2, 2017.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent Appl. US, no. 2017/0280546 A1, 2017.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent US, no. 9848486 B2, 2017.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent Appl. US, no. 2018/0184511 A1, 2018.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent US, no. 10104755 B2,2018.

Cheung T.S., Wong C.H.C. Induction devices and methods of using them. Patent US, no. 10462890 B2, 2019.

Bazargan S., Badiei H. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets. Patent Appl. US, no. 2015/0235833 A1, 2015.

Bazargan S., Badiei H. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets. Patent EP, no. 3105774 A1, 2016.

Bazargan S., Badiei H.Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets. Patent US, no. t 9754774 B2, 2017.

Bazargan S., Badiei H. Systems and methods for automated analysis оf output in single particle inductively coupled plasma mass spectrometry and similar data sets. Patent Appl. US, no. 2017/0358438 A1, 2017.

Bazargan S., Badiei H. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets. Patent US, no. 10431444 B2, 2019.

Bazargan S., Badiei H., Patel P. Systems and methods for automated optimization of a multi-mode inductively coupled plasma mass spectrometer. Patent Appl. US, no. 2015/0235827 A1, 2015.

Bazargan S., Babiei H., Patel P. Systems and methods for automated optimization of a multi-mode inductively coupled plasma mass spectrometer. Patent US, no. 10181394 B2, 2019.

Patel P., Stephan C., Abou-Shakra F. Systems and methods using a gas mixture to select ion. Patent US, no. 10615020 B2, 2020.

Wehr H. Addition of reactive species to ICP source. Patent US, no. 10056241 B2, 2016.

Schlueter H.-J. Control of gas flow. Patent US, no. 10446377 B2, 2019.

Schwieters J., Wehr H., Lewis J. Methods in mass spectrometry using collision gas as ion sourcePatent US, no. 10651023 B2, 2020.

Stephan C., Badiei H., Savtchenko S., Bazargan S. Spray chambers and methods of using them. Patent Appl. US, no. 2017/0338092 A1, 2017.

Stephan C., Badiei H., Savtchenko S., Bazargan S. Spray chambers and methods of using them. Patent US, no. 10147592 B2, 2018.

Stephan C., Badiei H., Savtchenko S., Bazargan S. Spray chambers and methods of using them. Patent US, no. 10395912 B2, 2019.

Сheung T.S., Wong C., Badiei H.R. Advantages of a novel plasma generator for the NexION 1000/2000/5000 ICP-MS. Technical note. PerkinElmer US LLC, 2023. 8p.

PerkinElmer Asperon spray chamber: delivering “intact individual cell” to the ICP-MS plasma. PerkinElmer. Inc., 2017. 4 p.

Single cell ICP-MS analysis: quantification of metal content at the cellular level. PerkinElmer, Inc., 2017. 4p.

Any matrix. Any interference. Any particle size. NexION 2000 ICP mass spectrometer. PerkinElmer Inc., 201712 p. BRO-NexION-2000-ICP-MS-012730_01.

NexION 2000 ICP-MS – Any matrix, any interference, any particle size. Available at: https://www.youtube.com/watch?v=h0zCxqquEO4.

NexION 2000 ICP-MS in lab, product demo video. Available at: https://www.youtube.com/watch?v=ybA9eiTvL30.

NexION 2000 ICP-MS. Consumables and supplies. PerkinElmer Inc., 2017. 13 p.

NexION 2000 ICP-MS. Specifications. PerkinElmer Inc., 2017. 2 p.

NexION 1000/2000 ICP-MS. Preparing your lab. PerkinElmer Inc., 2017. 9 p.

Stephan C., Badiei H., Bazargan S., Hineman A. Advancement in single particle ICP-MS – Significant instrument settings and their implications on data quality. Europ. Winter conf. on plasma spectrochem. (EWCPS2017). Sankt Anton, Arlberg, Austria, p. 43.

Bazargan S., Badiei H. A robust signal processing approach for single particle-ICP-MS analysis with dwell times in both the millisecond and microsecond range. Europ. Winter conf. on plasma spectrochem (EWCPS2017). Sankt Anton, Arlberg, Austria, p. 44.

Stephan C., Badiei H., Bazargan S. Single cell ICP-MS – Monitoring the uptake of ionic and particulate metals in individual cells. Europ. Winter conf. on plasma spectrochem (EWCPS2017). Sankt Anton, Arlberg, Austria, p. 70.

Neubauer K., Pruszkowski E. Optimized ICP-MS analysis of elemental impurities in semiconductor-grade hydrochloric acid. Spectrosc., 2017, vol. 32, no. 9, pp. 17-26. 283. Garbi O., Birbilis N. Clarifying the dissolution mechanisms and electrochemistry of Mg2Si as a function of solution pH. J. Electrochem. Society, 2018, vol. 165, no. 9, pp. C497-C501. doi: 10.1149/2.1061809jes.

No interference between you and better throughput. NexION 1000 ICP mass-spectrometer. PerkinElmer Inc., 2017-2018, 8 p.

Four Qs are better than QQQ. BRO_NexION5000-ICP-MS.pdf. PerkinElmer Inc, 2020. 17 p.

NexION5000 – multi-quadrupole ICP-MS – interactive brochure. s4science.at/worldpress/wp-content/upload/2020/04/NexION-5000-ICP-MS-interactive-brochure.pdf.

NexION5000 multi-quadrupole ICP-MS. Available at: youtube.com/watch?v=NnYM9IsR00c; youtube.com/watch?v=viZCAgRbuHU; youtube.com/watch?v=xHpnjA7-42Q.

NexION 5000 Multi-quadrupole ICP mass spectrometer. Product note. PerkinElmer Inc., 2020, 67427 (55501A).

Badiei H.R., Fisher W., Savtchenko S., Pruszkowski E., Icasiano A. Advantages of a novel interface design for NexION5000 ICP-MS. Uncompromised design for uncompromised performance. Technical note. PerkinElmer Inc., 2020, 5 p.

NexION 5000 multi-quadrupole ICP-MS. Installation specification. PerkinElmer, 2020, 68526 (52373A).

Pruszkowski E. Characterization of ultrapure water using NexION5000 ICP-MS. Application note. PerkinElme, Inc., 2020, 6 p.

Introducing Thermo Scientific iCAP Q ICP-MS. Simplified operation. Advanced performance. Spectrosc., 2012, vol. 27. no. 2, pp. 24-25.

iCAP Q ICP-MS. Launch 2012. Thermo Fisher Scientific Inc., 2012. 48 p.

Thermo Fisher Scientific. Experience dramatically different ICP-MS… The world leader in servicing sciense. Propietary&Confidential. Thermo Fusher Scientific, 2012. 86 p.

Thermo Scientific iCAP Q ICP-MS. Dramatically different. Product specifications. Thermo Fisher Scientific Inc., 2012. 8 p.

Thermo Scientific iCAP Q ICP-MS. Gain more performance, experience, more simplicity. Thermo Fisher Scientific Inc., 2015. 12 p.

Thermo Fisher Scientific iCAP Q. Preinstallation requirement guide. Thermo Fisher Sciebtific Inc., 2012. 60 p.

Thermo Fisher Scientific iCAP Q ICP-MS. Operation manual. P/N 1288090. 134 p. Revision B. 2012.

Thermo Fisher Scientific iCAP Q ICP-MS. Software manual. 510 р. Revision B-1288010. 2012. 510 p. Revision C. 2013. 598 p.

Tomoko V. Silicon applications of the new quadrupole ICP-MS iCAP Q. Thermo Scientific Bremen GmbH / Workshop CSP, 2012. 30 p.

Determination of nanoparticle size and number concentration using the npQuant evaluation module for Qtegra. ISDS, 2012. 17 p.

The ICAP-Q ICPMS from Thermo Scientific. Available at: htths://www.youtube.com/watch?v=eL1X2e_pFHo.

iCAP Q ICP-MS: Flythrough. Available at: https:. www.youtube.com/watch?v=07QSwVuwZMk.

Vills D., Katcher D., Lecorne G. [Determination of impurities in medicaments by mass-spectrometer with ICP Thermo scientific iCAP Qc]. Аnlitika [Analitics], 2013, 6 (13), pp. 36-43. (in Russian).

Leykin A.Yu., Karandashev V.K., Lisovskiy S.V., Volkov I.V. [Application of reaction-collizion cell for determination of impurity elements in rare earth metals by ICP-MS method] Zavod. Lab. Diagnostika materialov. [Industrial Laboratory. Diagnostics of Materials], 2014, vol. 80, no. 5, pp. 6-9. (In Russian)

Chew D.M., Donelick R.A., Donelick M.B., Kamber B.S., Stock M.J. Apatite chlorine concentration measurements by ICP-MS. Geostand. Geoanal. Research., 2014, vol. 38, no. 1, pp. 23-35. doi:10. 1111/j.175-908X. 2013.00246.

Hutchinson R.W., McLachin K.M., Riquelme P., Haarer J., Broichhausen C., Ritter U., Geisser E.K., Hutchinson J.A. Laser ablation inductively coupled plasma mass spectrometry. An emerging technology for multiparameter analysis of tissue antigens. Transplantat. Direct., 2015, vol. 1, no. 8, pp. 1-6. doi: 10.1097/TXD.0000000000000541.

Nia Y., Millour S., Noël L., Krustek P., De Long W., Guėrin T. Determination of Ti from TiO2 nanoparticles in biological materials by different ICP-MS instruments: method validation and applications. J. Medicine&Nanotechnology, 2015, vol. 6, no. 2, pp. 2-8, doi: 10.4172/2157-7439.1000269.

Kutscher D., McSheehy-Ducos S., Lindemann T., Axsellsson M. Analysis of nanoparticles using the ICAP Q ICP-MS. 7th Nordic Conf. Plasma Spectrochim. Norway, Loen 2014, p. 25.

Sötebier C.A., Kutscher D.J., Rottmann L., Jakubowski N., Panne U., Battmer J. Combination of single particle ICP-QMS and isotope dilution analysis for the determination of size, particle number and number size distribution of silver nanoparticles. J. Anal. Atom. Spectrom., 2016, vol. 31, no. 10, pp. 2045-2052. doi: 10.1039/C6JA00137H.

Phadke R.K., Gaitonde V.D. Analytical method validation for determination of heavy metal in capsule shell by inductively coupled plasma mass spectrometry (ICP-MS). Intern. J. Advanc. Research., 2016, vol. 4, no. 10, pp. 447-456. doi: 10.21474/IJAR01/1813.

Morton J., Tan E., Suvarna S.K. Multi-elemental analysis of human lung samples using inductively couple plasma mass spectrometry. J. Trace Element. Medicine Biolog., 2017, vol. 43, no. pp. 63-71. doi: 10.1016/jtemb.2016.11.008.

Brima E.I. Determination of metal level in Shamma (smokeless tobacco) with inductively coupled plasma mass spectrometry (ICP-MS) in Najran, Saudi Arabia. Asian Pacific J. Cancer Prevention, 2016, vol. 17, no. 10, pp. 4761-4767. doi: 10.22034/APJCP.2016.17.104761.

Chew D.M., Petrus J.A., Kenny G.G., McEvoy N. Rapid high-resolution U-Pb La-Q-ICP-MS age mapping of zircon. J. Anal. At. Spectrom., 2017, vol. 32, no. 2. doi: 10.1039/C6JA0040K.

Yakimovich P.V., Alekseev A.V. [Determination of gallium, germanium, arsenic and selenium in heat resistant alloys and microdoped RZM by ICP-MS method] Trudy VIAM [Works of VIAM], 2015, no. 3, pp. 62-68. doi: 10/18577/2307-6046-2015-03-9-9. (in Russian).

Alekseev A.V., Yakimovich P.V., Min P.G. [Determination of impurities in Nb alloy by ICP-MS P. I]. Trudy VIAM [Works of VIAM], 2015, no. 6, pp. 29-37. doi: 10.18577/2307-6064-2015-0-6-4-4. (in Russian).

Alekseev A.V., Yakimovich P.V., Min P.G. [Determination of impurities in Nb alloy. P. II]. Trudy VIAM [Works of VIAM], 2015, no. 7, pp. 13-20. doi: 10.18577/2307-6064-2015-0-7-3-3. (in Russian).

Alekseev A.V., Yakimovich P.V. [Microvawe preparation of chromium for determination of harmful impurities by ICP-MS method]. Trudy VIAM [Works of VIAM], 2015, no. 11. pp. 87-94. doi: 10.18577/2307-6046-2015-0-11-12-12. (in Russian).

Alekseev A.V., Yakimovich P.V., Leykin A.Yu. [Analysis of nickel alloys by ICP-MS method with laser ablation]. Trudy VIAM [Works of VIAM], 2017, no. 5(53), pp. 104-110. doi: 10.18577/2307-6046-2017-05-12-12. (in Russian).

Song X., Zheng F., Huang M., Sun X., Li H., Chen F., Sun B. Multielement analysis of Baijiu (Chinese liquors) by ICP-MS and their classification according to geographical origin. Food Quality Safety, 2018, vol. 2, no. 1, pp. 43-49. doi: 10.1093/fqsafe/fyx030.

Rottmann L., Jung G., Vincent T., Wills J. Collision/reaction cell for ICP-MS – a new concept for an improved removal of low masses. Poster at 19th Intern. Mass Spectrom. Conf. (19IMSC). Kyoto, Japan, 2012.

Thomas R. Practical guide to ICP-MS: a tutorial for beginners. Third edition. CRC Press, Taylor&Francis Group, 2013. 446 p.

Thermo Scientific - iCAP Q ICP-MS. EVISA, 2012.

Jung G., Rottmann L. Сollision cell multipole. Patent Appl. US, no. 2015/0102215 A1, 2015.

Jung G., Rottmann L. Collision cell multipole. Patent US, no. 9099290 B2, 2015.

Jung G., Rottmann L. Collision cell multipole. Patent Appl. US, no. 2016/0027633 A1, 2016.

Rottmann L., Makarov A.A., Schlueter H.-J., Wehe C. Mass spectrometer. Patent Appl. US, no. 2017/0084447 A1, 2017.

Schlueter H.-J. Quadrupole mass spectrometer. Patent Appl. US, no. 2017/0213717 A1,2017.

Schlueter H.-J. Quadrupole mass spectrometer. Patent US, no. 9934954 B2, 2018.

Rottmann L., Makarov A., Schlueter H.-J., Wehe C. Elemental mass spectrometer Patent US, no. 10665438 B2, 2020.

Makarov A.A. Targeted mass analysis. Patent US, no. 9812307 B2, 2017.

Makarov A.A. Targeted mass analysis. Patent US, no. 10410847 B2, 2019.

Makarov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 9012839 B2, 2015.

Makarov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 9640379 B2, 2017.

Makarov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 9697999 B2, 2017.

Makarov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 9741549 B2, 2017.

Makatov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 10283338 B2, 2019.

Makarov A.A., Rottmann L. Mass spectrometer vacuum interface method and apparatus. Patent US, no. 10475632 B2, 2019.

Budanovic M. Accelerated in elemental impurity analysis by ICP-MS. Thermo Fisher Scientific. 2021, 29 р.

Sitlaothaworn K. Total elemental analysis by iCAP RQ ICPMS. 33 p.

McLachlan N.W. Theory and application of Mathieu functions. Oxford, Claredon Press, 1947. 402 p.

Leykin A.Yu., Yakimovich P.V. [Systems of suppression of spectral interferens in mass-spectrometry with inductively coupled plasma]. Zh. analit. khimii [J. analyt. Chem.], 2012, vol. 67, no. 8, pp. 752-762. (in Russian).

Thermo Scientific iCAP RQ ICP-MS. Simplicity, productivity and robustness for routine labs. Product specifications. Thermo Fisher Scientific Inc., 2016. 8 p.

Thermo Scientific iCAP RQ ICP-MS. Robust ICP-MS with ease of use and high productivity for routine laboratories. Thermo Fisher Scientific Inc., 2017. 12 p.

Thermo Scientific iCAP RQ ICP-MS. Pre-installation requirements guide. Thermo Fisher Scientific, P/N BRE0009927, Revision A, 2016. 71 p.

Temerdashev Z.A., Galitskaya O.A., Bolshov M.A., Romanovskii K.A. [Determination of size nanoparticles of silver in water dispersion by mass-spectrometry with inductively coupled plasma using detection of single purticles]. Zh. analit. khimii [J. analyt. Chem.], 2022, vol. 72, no. 1, pp. 39-52. doi: 10.31857/S3344450222010145. (in Russian).

Abakumova D.D. Osopbennosti summarnogo opredeleniya raslichnyh form (neorganichernoy i organicheskoy) nahozhdeniya in vodah Azovskogo and Chernogo morey [Particularity of total determination of different forms (nonorganic and organic) presence in waters of Azovskogo and Chernogo seas]. PhD Thesis. Kubansk. University, Krasnodar, 2022. 168 p. (in Russian).

Zanini R., Roman M., Cattaruzza E., Traviglia A. High-speed andhigh-resolution 2D and 3D elemental imaging of corroded ancient glass by laser ablation-ICP-MS. J. Anal. Atom. Spectrom., 2023, vol. 38, pp. 917-926. doi: 10.1039/d2ja003371.

Thermo Scientific iCAP TQ ICP-MS. Redifining triple quadrupole ICP-MS with unique ease of use. Thermo Fisher Scientific, 2018. 12 p.

Lofthouse S. Latest development in elemental analysis – introducing the Thermo Scientific iCAP TQ ICP-MS. 39 p.

Miura T., Wada A. Precise purity analysis of high-purity lanthanum oxide by gravimetric analysis assisted with trace elemental analysis by inductively coupled plasma mass spectromertry. Frontier. Chem., 2022, vol. 10, 8 p. doi: 10.3389/fchem.2022.888636.

Santos dia Silva A.B., Arruda M.A.Z. Exploring single-particleICP-MS as an important tool for the characterization and quantification of silver nanoparticles in a soy beam all culture. Spectrochim. Acta. Part B, 2023, vol. 203, article 106663. doi: 10.1016/sab.2023.106663.

Sanchez-Cachero A., Rodriguez-Farinas N., Jimenez-Moreno R., Marttin-Doimeadios R.C.R. Quantitative analysis and characterization of PtNPs in road dust based on ultrasonic probe assisted extraction and single particle inductively coupled plasma mass spectrometry. Spectrochim. Acta. Part B, 2023, vol. 203, artticle 106665. doi: 10.1016/sab.2023.106665.

Derrich Quarles C. Jr, Bohlim N., Saetveit N., Sullivan P. Evaluation of blood and synthetic matrix-mathed calibrations using manual and in line sample. J. Anal. Atom. Spectrom., 2022, vol. 37, pp. 1512-1521. doi: 10.1099/d2ja00056c.




DOI: https://doi.org/10.15826/analitika.2025.29.1.001

Ссылки

  • На текущий момент ссылки отсутствуют.