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Sodium intercalation into a- and -V0SO,

Na-ion battery is one of the best alternatives to Li-ion battery. Abundance
of sodium on earth is three orders of magnitude higher than lithium, which should
make Na-ion battery technology cheaper. But alkaline-ion battery prices, which
tend to increase hecause of the massive world demand, also depend on the choice
of electrode materials. Therefore, cost-effective electrode development remains
an important subject of research because this will allow Na-ion battery to be even
more competitive. Electrochemical performances of anhydrous V0SO0, as electrode
for Na-ion battery are reported in this letter. Two anhydrous phases of vanadyl
sulfate have been studied. The first one, a-V0SO0,, shows that up to 0.8 sodium
per formula unit (Na/f.u.) can be intercalated in this phase, and a reversible
intercalation of 0.4 Na/f.u. has been observed with a strong polarization. The
second one, B-V0SO,, can intercalate up to 0.9 Na/f.u. with a reversible inter-
calation of 0.4 Na/f.u. leading to a reversible capacity of 64 mAh/g.
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Introduction

The search for new materials that
could be used as electrode material for the
Na-ion batteries is one of today’s most chal-
lenging issues. Many families of transition
metal oxides as well as transition metal poly-
anionic frameworks have been proposed
these last five years. Among them, Na-
Super-Ionic-Conductors (NaSICON) are
one the most popular materials due to their
good cycling ability and Na" mobility. How-
ever, sulfates represent an interesting and
low-cost class with only few reported mem-
bers. Therefore, few sodiated iron sulfates
[1-4] can be found in the literature and only

one example of sodiated vanadate sulfate has
been reported up to date (Na,VO(SO,),)
as an electrode material for Na-ion battery
[5]. This material delivers a reversible capac-
ity of 60 mAh/g at 4.5V vs Na/Na.

In this work, we report the use of an-
hydrous vanadyl sulfate as an electrode
material for Na-ion battery. Anhydrous
VOSO, exists in two forms at room tem-
perature: a-VOSO, is tetragonal and is
formed by dehydration of its hydrate below
280 °C [6], B-VOSO, is orthorhombic and
may be prepared either from the reaction
of H,SO, and V,O, [7] or by dehydration
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above 280 °C, although decomposition oc-
curs when using this last method [8]. The

Experimental

The alpha form, a-VOSO,, was prepared
by a simple dehydration of VOSO,xH,O
(5 g, Sigma Aldrich) at 260 °C for 2 days,
then stored in a glove-box to prevent re-
hydration from air moisture. On the other
hand, B-VOSO, was prepared by a pre-
cipitation reaction starting from stoichi-
ometric amounts of hydrated vanadium
oxysulfide VOSO,-xH,O (1.8 g) heated
at 140 °C in 100 mL of sulphuric acid
solution (0.1M H,SO,) for 2 hours. The
resulted green mixture was then filtered
and washed with water. The obtained pow-
der is then left overnight at 160 °C in an
oven before being stored in argon-filled
glove-box. The compounds were characte-
rized by X-ray powder diffraction (XRD)
using a Philips X'Pert 2 diffractometer

Results and discussion

First report on preparation of the phase
alpha of anhydrous vanadyl sulfate was
published in 1965 by J. Tudo [6]. Its crys-
tal structure was optimized and its mag-
netic properties studied by R.]. Arnott and
J.M. Longo in 1970 [9]. They suggest that
trace of water was present in Tudo’s sample.
This phase crystallizes within a tetragonal
structure (space group: P4/n) with a =
6.258 A, ¢ = 4.122 A and a volume of V =
161.42(3) A>. Along the c-axis, we can ob-
serve continuous chains of corner-shared
VO, octahedra, as shown in Fig. 1. All these
chains are corner-shared with SO, tetrahe-
dra forming a three-dimensional network.

First report on the phase beta of anhy-
drous vanadyl sulfate was published in 1927
by A. Sieverts and E. L. Miiller [7]. In 1970,
its crystal structure and its magnetic pro-
perties have been studied in the same paper
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charge-discharge profile of both known
phases, a- and p-VOSO,, will be discussed.

with Bragg-Brentano geometry (Cu Ka
radiation). Note that due to their instabil-
ity in air, the reduced phases’ XRD pat-
terns were registered under vacuum using
a chamber attached to the XRD instru-
ment. The electrochemical characterization
was performed in cells build in Swagelok
compression tube fitting with a solution
IM NaClO, in propylene carbonate (PC)
as electrolyte and metallic sodium as coun-
ter electrode. The working electrode was
prepared from a mixture of active mate-
rial with acetylene black in a weight ratio
of 50:50. The electrochemical cells were cy-
cled at constant current between 1.0-3.0 V
at different galvanostatic rates on a VMP
III potentiostat/galvanostat (Biologic SA,
Claix, France) at room temperature.

than a-VOSO, [9]. This phase crystallizes
within an orthorhombic structure (space
group: Pnma) with a =7.384 A, b=6275A,
c=7.078 A and a volume of V = 327.92(3)
A’ B-VOSO, is described by Gaubicher
et al. as chains of corner-sharing distorded
vanadium oxygen octahedra along the a-
axis. Those chains are linked to sulphate
groups which alternately point in opposite
directions along the c-axis [10].

Interestingly, Gaubicher et al. published
the reversible intercalation of 0.6 lithium
ions into B-VOSO, at 2.84 V vs Li*/Li. After
a first intercalation of 0.9 lithium through
a biphasic process at 1.75 'V, a solid solution
reaction takes place. The structure of the
reduced phase Li,,VOSO, has not been
solved [10].

We investigated the charge-discharge
profile of a-VOSO, carried out at C/20



between 1.0 and 3.0 V (Fig. 2a). The slope
of the curve suggests that a solid solution
process occurs during both charge and
discharge. The theoretical capacity for the
intercalation of 1 sodium per VOSO, is
160 mAh/g. The first discharge allows the
intercalation of 0.8 Na/f.u. at an average
voltage of 1.58 V with an average of 0.6
Na/f.u. reversibly deintercalated after 4
cycles. This corresponds to a reversible
capacity of 96 mAh/g. The intercalation
and deintercalation of sodium occur in two
distinct processes centered respectively
at 1.45 then 1.15 V for the intercalation
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and 2.42 then 2.68 V for the deintercala-
tion, as observed on Fig. 2b.

The charge-discharge profile
of B-VOSO, carried out at C/20 between
1.0 and 3.0 V is depicted in Fig. 2c. The
slope of the curve suggests also that a solid
solution process occurs during both charge
and discharge. The first discharge allows
the intercalation of 0.9 Na/f.u. at an aver-
age voltage of 1.58 V, but only 0.4 Na/f.u.
were reversibly deintercalated, correspond-
ing to a reversible capacity of 64 mAh/g.
This potential characterizes the V**/V*" re-
dox potential. The capacity remains almost
unchanged after 4 cycles. The intercalation

Fig. 1. (a) Rietveld refinement of the XRD pattern for a-VOSO, and its structure along the
c-axis; (b) Rietveld refinement of the XRD pattern for B-VOSO, and its structure along the
a-axis
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and deintercalation of sodium occur in two
distinct processes centered respectively
at 1.90 and 2.40 V for the intercalation and
2.30 and 2.85 V for the deintercalation pro-
cess, as observed in Fig. 2d.

According to the electrochemical study
(lower polarization and almost no shift
on capacity after few cycles), p-VOSO,
seems more suitable for the intercalation
of Na and therefore should be more deeply
investigated. Best performance of f-VOSO,
can be explained by the channels observed
in a-VOSO, structure (1.5 A) being smal-
ler than in b-VOSO, structure (2 A) (see
Fig. 1). The difference in channel sizes
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comes from a difference of configuration
of SO, tetrahedra in these structures. In
the a-VOSO, structure, SO, tetrahedra are
linked to four channels of VO, octahedra.
In contrast, only three channels of VO, oc-
tahedra are connected to the SO, channels
in the B-VOSO, structure. Consequently,
the structure is more constrained with less
space between VO, octahedra chains in a-
VOSO, than in f-VOSO,.

To complete our study, we decreased
the size of the particles of a-VOSO,
by using a mechanochemical process
(250 rpm/1.5 hrs). Although this ball mill-
ing process effectively nanostructured our
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Fig. 2. (a) Potential-capacity curves of a-VOSO, at the galvanostatic rate of C/20 between 3.0
and 1.0 V; (b) corresponding derivative curves; (c) potential-capacity curves of f-VOSO, at the
galvanostatic rate of C/20 between 3.0 and 1.0 V; (d) corresponding derivative curves
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material, as shown on the following X-ray
pattern (Fig. 3, middle line), this did not
improve the electrochemical properties
of our material.

Attempts to chemically reduce either a-
or B-VOSO, using sodium naphthalenide
in THF have been unsuccessful due to the
dissolution of the material in THE

Finally, ex situ XRD pattern has
been obtained after the first reduction
of a-VOSO,. This shows that an amorphi-
zation process occurred during the inter-
calation of sodium into a-VOSO, phase
(Fig. 3, upper line).

Conclusions

In this work, we demonstrated that a-
and B-VOSO, can be used as an electrode
material in Na-ion battery. To the best
of our knowledge, this is only the second
vanadyl sulfate based material used in Na-
ion battery. The B phase exhibits smaller
polarization than the a phase. Intercala-
tion and deintercalation of 0.4 Na/f.u. have
been observed, which correspond to a ca-
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Fig. 3. Powder X-ray diffraction pattern
of as prepared a-VOSO, phase (lower curve);
powder X-ray diffraction pattern of a-VOSO,

phase after ball milling (middle curve);
powder X-ray diffraction pattern of a-VOSO,

phase after Na intercalation (upper curve)

pacity of 65 mAh/g. This reversible ca-
pacity is quite low, but could be improved
by playing with the particle size as well
as carbon coating, even though nanosiz-
ing has been unsuccessful on the a phase.
Then, due to its attractive price and its
cycling capability, further investigations
on the intercalation of sodium in B-VOSO,
are in progress.
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