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Abstract 

Pyrene-based compounds have a great potential as fluorescent 

chemosensors for various analytes including common nitro-

explosives, such as 2,4,6-trinitrotoluene (TNT). Compounds having 

two pyrene units in one molecule, such as bispyrenylalkanes, are 

able to form stable, bright emissive in a visual wavelength region ex-

cimers both in non-polar and polar environments. In this work we 

wish to report that in non-polar solvents the excimer has poor 

chemosensing properties while in aqueous solutions it provides sig-

nificant “turn-off” fluorescence response to TNT in the sub-

nanomolar concentrations. 
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1. Introduction 

Due to an increased terrorism threats, the remote detec-

tion of TNT and DNT as main components of explosive 

blends [1] has become an actual task. Visual detection of 

explosives [2–5] is one of the oldest analytical techniques 

offering vast possibilities for the on-site, real-time analy-

sis with a very fast response time. Among the visual meth-

ods, fluorescence [6–9] “turn-off” [10–15] detection is the 

most convenient due to high sensitivity and fast response 

time; in the last two decades, various fluorescent sensors 

for many analytes, including (nitro)explosives, have been 

reported. Among many fluorescent chemosensors [16], 

those based on polycyclic aromatic hydrocarbons (PAH-

based) have gained wide attention owing to their unique 

fluorescent properties, such as long-wavelength excimer 

emission [17] either in a solution [18] or in a solid state. 

And pyrene-based chemosensors can be ideal candidates to 

use in PAH-based chemosensors because of the well-

known pyrene intense emission with long lifetime values 

[19–28], tendency to form excimers [29] and high sensi-

tivity to electron-deficient molecules (e.g., nitroaromatics) 

[30,31]. 

In this manuscript we wish to report our study of the 

ability of the simple bispyrenylalkane chemosensor to ef-

fectively detect a common nitro-explosive, such as  

2,4,6-trinitrotoluene (TNT). 

2. Experimental 

Starting materials are commercially available. UV-Vis ab-

sorption spectra were measured on the spectrophotometer 

Shimadzu UV-1600 (Japan). Emission and excitation spec-

tra were measured on the Horiba FluoroMax-4 (USA). The 

emission spectra were normalized automatically using the 

“Normalize columns” option in the OriginPro 2015 soft-

ware (64-bit) b9.2.196. Fluorescence titration experiments 

were carried out by using the Horiba-Fluoromax-4 spec-

trofluorometer (USA). Photos were taken with the Canon 

D3000 Kit camera. 

3. Results and Discussion 

Chemosensor 1 was prepared as reported earlier [32,33] 

by using the condensation reaction between the  

1-pyrenecarboxaldehyde and acetone with the following 

reduction of the obtained condensation product (Fig. 1). 

Next, the photophysical properties of compound 1 in 

the absence and in the presence of TNT were studied. Pre-

viously, the intensive excimer emission of 10
-5

 M solutions 

of compound 1 in methylcyclohexane was reported [32]. 
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Fig. 1 Synthetic scheme for sensor 1 

However, in our experiments only a feeble response 

through the excimer fluorescence quenching with poor 

linearity in the Stern-Volmer plot was observed in cyclo-

hexane. 

Based on the earlier reports [34,35], we suggested that 

the polarity of a solvent can be the driving force for the 

geometry changes in the molecule of 1, which are highly 

soluble in non-polar solvents. In polar solvent media, this 

lipophilic molecule could act as a surfactant and the hy-

drophobic interactions would make molecule 1 to bend 

over the pentane linker. In this case, the proximity effect 

between two pyrene moieties will result in excimer emis-

sion, while the monomeric emission of 1 will be sup-

pressed. In addition, the lipophilic nature of the interior of 

the cavity formed by molecule 1 would provide a driving 

force for the transport of TNT molecules from the polar 

solvent media inside the non-polar micellar chemosensor 

to cause the dramatic excimer fluorescence quenching. 

To prove that, the photophysical studies of com-

pounds 1 (10
-6

 M) in different solvent systems were car-

ried out. The selected solvents were arranged in the order 

of their increasing polarity: cyclohexane, THF (tetrahydro-

furan), DMSO (dimethyl sulfoxide), and various solutions 

of DMSO in water. As it was expected, upon the increasing 

the polarity of solvents, a gradual decrease in the absolute 

intensity of the monomer emission was observed (Fig. 2), 

along with an increase in the intensity of the excimer 

emission. The highest excimer emission was observed for 

the 50% aqueous solution of DMSO, and this solvent was 

selected for our experiments. 

The visual detection experiments were carried out for 

the solution of sensor 1 by using common borosilicate 

glass vials (10 mL), and the picture is presented below 

(Fig. 3). Thus, depending on the concentration of TNT  

(10
-4

 M solution of in acetonitrile) added to the 10
-6

 M so-

lution of sensor 1 in DMSO/H2O (1:1), different degree of 

fluorescence quenching was observed (λex = 365 nm). 

 
Fig. 2 Emission spectra (left) and normalized emission spectra (right) of sensor 1 (10-6 M) in the solvents of different polarity 

 
Fig. 3 The visual detection experiment for chemosensor 1 in DMSO/H2O (1:1): pictures of sensor 1 under UV light (λ = 365 nm) after 
stepwise addition of nitro explosive (TNT) 
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Next, the fluorescence quenching titration was carried 

out. The fluorescence response of the chemosensor to-

wards the nitro-analyte was quantitatively calculated us-

ing the Stern-Volmer static quenching model according to 

Eq. (1): 
𝐼0

𝐼
= 1 + 𝐾SV[Q] . (1) 

The calculated Stern-Volmer constant value for TNT 

was determined to be as high as Ksv = 4.67·10
5
 M

-1
 for the 

static quenching model (Fig. 4). At low concentration of 

TNT quencher the close to linear behavior of Stern-Volmer 

plots was observed, which suggests the prevalence of only 

one quenching mechanism, such as static quenching. 

The calculated limit of detection (LOD) of 143 µg/L 

(136 ppb) for the sensor 1 was estimated as reported earli-

er [36]. 

4. Conclusions 

In summary, we described a tunable bispyrenylalkane 

chemosensor, which provides a simple, fast and conven-

ient way for the detection of common nitroaromatic explo-

sive (2,4,6-TNT) in aqueous solutions. Its sensory re-

sponse is visible enough to be detected even by the naked 

eye. The value of the Stern-Volmer constant of the fluores-

cence quenching for 2,4,6-trinitrotoluene was found to be 

high and equal to 4.67·10
5
 M

-1
. 
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