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Abstract 

Alzheimer's disease is a chronic neurodegenerative disease, which is 

characterized mainly by a progressive decrease in intellectual abili-

ties, memory impairment and a change in a person's personality. Un-

fortunately, there are practically no medicines that act on the patho-

genesis of Alzheimer's disease. The development of new highly effec-

tive medicines for the treatment of this pathology is one of the cru-

cial areas of pharmaceutical research. The aim of this work is to 

search among 2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one effective compounds with anticholinesterase 

and antiamyloid activities. As a result, it was found that compounds 

4d, 4e and 4f have the highest anticholinesterase ability, containing 

in their structure the residues of hydroxy-methoxyphenyl fragments. 

Structures 4c, 4g, 4h, 4j, 4k, 4m, 4n and 4p showed slightly lower ac-

tivity, the effect of which did not differ statistically from that of 

Donepezil. Compounds 4c, 4e, 4k and 4m have the greatest ability to 

inhibit the formation of the amyloid, comparable to GV-971. It should 

be noted that the molecular docking data are consistent with the re-

sults of the determination of the anticholinesterase activity of the 

studied compounds obtained in vitro. Thus, the prospects for future 

studies of these compounds concerning the possibility of creating a 

pharmaceutical active substance for the treatment of neurodegenera-

tive diseases have been revealed. 
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1. Introduction 

Alzheimer's disease (AD) is one of the most common neu-

rodegenerative diseases in humans. Currently, there are 

practically no pathogenetic drugs that can cure the pa-

tient. Drug therapy is aimed only at eliminating the symp-

toms of the disease and slowing its progression. The most 

widely used anticholinesterase (AChE) drugs that can neu-

tralize the symptoms of cholinergic insufficiency. Recent-

ly, the development of antiamyloid drugs that can directly 

affect the pathogenesis of the disease and thereby signifi-

cantly improve the patient's well-being has been intensi-

fied. Thus, the search for new compounds with the above 

properties is a cutting-edge area of medicinal chemistry 

and neuropharmacology [1]. 

Research is actively underway to develop the new ace-

tylcholinesterase inhibitors. Thus, new thiazolylhydrazone 

derivatives were designed and synthesized as acetylcholin-

esterase and butyrylcholinesterase (BChE) inhibitors. All 

compounds showed a weak inhibitory effect on BChE; 

meanwhile, most of the compounds had a certain AChE in-

hibitory activity [2]. Research was carried out to study the 

possibility of designing acetylcholinesterase inhibitors 

based on isoquinolone and azepanone derivatives. Overall, 

the compounds studied are weak AChE inhibitors, but, 

nonetheless, important insights were obtained on their 

mode of inhibition so that more potent analogues can be 

designed, prepared and tested [3]. There are literature data 

indicating that chalcone can be used as the scaffold for cho-

linesterase inhibitor [4]. Pharmacophore based 3D QSAR 
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models for human acetylcholinesterase inhibitors with good 

significance, statistical values were generated. Virtual 

screening experiments and subsequent in vitro evaluation 

of promising hits revealed a novel and selective AChE inhib-

itor [5]. A number of pyrimidine derivatives were synthe-

sized, among which there are compounds that may be con-

sidered as leaders for investigations in neurodegenerative 

diseases [6]. Some of diversely functionalized pyrimidine 

fused thiazolino-2-pyridones have an ability to inhibit the 

formation of amyloid-β fibrils associated with Alzheimer's 

disease, while others bind to mature amyloid-β and α-

synuclein fibrils [7]. A new series of pyrimidine and pyri-

dine diamines was designed as dual binding site inhibitors 

of cholinesterases, characterized by two small aromatic 

moieties separated by a diaminoalkyl flexible linker [8]. To 

obtain a multipotent framework that can target simultane-

ously cyclooxygenase-2, arachidonate 5-lipoxygenase, ace-

tylcholinesterase, and butyrylcholinesterase to treat neu-

roinflammation, a series of derivatives containing pyrimi-

dine and pyrrolidine cores were rationally synthesized and 

evaluated. Tacrine–pyrrolidine hybrids and tacrine–

pyrimidine hybrid emerged as the most potent AChE inhibi-

tors [9]. A series of 2,4-phenylsulfonyl-pyrimidine carbox-

ylate derivatives was designed and synthesized. Two com-

pounds among them exhibited promising AChE inhibition 

and significantly inhibited Aβ aggregation, that is important 

for anti-Alzheimer's action [10]. 2-Arylidene derivatives of 

thiazolopyrimidine with different linker size and target-

anchoring functional groups for the treatment of AD were 

synthesized. Some of them showed excellent to good AChE 

and BChE inhibition potential at nanomolar to low mi-

cromolar concentration [11]. A series of novel tetrahydropy-

rimidin-4-yl)pyridine derivatives was designed and synthe-

sized as inhibitors of AChE and BChE. The in vitro studies 

showed that all the synthesized derivatives showed signifi-

cant BChE inhibitory activity and were more potent than 

donepezil as the standard. All the target compounds demon-

strated good AChE inhibitory effects, comparable with 

donepezil as the reference drug [12]. 4-(Pent-4-yn-1-

yloxy)phenyl)-2-phenylpyrimidine derivatives were synthe-

sized and screened for monoamine oxidase and AChE inhibi-

tory activities [13]. New triazolopyridopyrimidine was easi-

ly prepared in good yields showing anticholinesterase inhi-

bition and strong antioxidant power, which allows using 

new hit-triazolo pyridopyrimidine for AD therapy [14]. 

Previously, we studied the biological activity of azome-

thine derivatives of 2-amino-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxamide, which are acyclic precur-

sors of 2-substituted 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one. 

The results show that some representatives of the studied 

azomethines have pronounced anticholinesterase and 

antiamyloid activities [15]. In this study, we decided to 

continue our research on finding candidates for the treat-

ment of Alzheimer's disease. We decided to take  

2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one as the objects of the study, since 

their azomethine precursors demonstrated the ability to 

inhibit the acetylcholinesterase enzyme and the formation 

of the amyloid. 

The proposed class of organic compounds has various 

types of biological activity. It was found that 2-(4-

Methoxyphenyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one may be an efficacious compound for 

the treatment of prostate cancer in advanced stages [16, 17]. 

Some thieno[2,3-d]pyrimidine-4(1H)-one-based analogs in-

hibit the growth of human colon tumor cells [18]. Also, this 

class of organic compounds can suppress the production of 

inflammatory mediators [19]. Studies on thiophenpyrimidine 

derivatives with various conjugated cyclic systems showed 

that modification of 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one 

by replacing conjugated cyclohexane with 1-methylpiperidine 

can increase the ability of such compounds to be used in 

breast cancer therapy [20]. Derivatives of thieno[2,3-

d]pyrimidine-4-one may have antioxidant properties [21]. 

Some new thieno[2,3-d]pyrimidine-4(3H)-one derivatives 

showed good analgesic activity by using Eddy´s hot plate 

method [22]. There are data indicating that tetrahydroben-

zo[4,5]thieno[2,3-d]pyrimidine scaffolds may serve as mod-

els for the development of antimalarial agents [23]. Some of 

the 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine deriva-

tives may exhibit anticonvulsant and antidepressant effects, 

which makes it possible to design compounds based on them 

with an effect on the central nervous system [24].  

A method was proposed for the synthesis of 2-substituted 

5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-

one by suspending 2-amino-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxamide in a small amount of butanol 

and the corresponding aldehyde with a catalytic amount of 

concentrated hydrochloric acid [17]. There is a technique for 

obtaining compounds of this series using ZnO-CeO2 nanocom-

posite as a catalyst. ZnO-TiO2 nanocomposites were added to 

the mixture of aminoamide and aldehyde [25]. It is possible to 

carry out the chemical interaction of 2-amino-4,5,6,7-

tetrahydro-1-benzothiophene-3-carboxamide with aldehydes in 

a DMF and piperidine medium when heated [26] and in the 

environment of hydrochloric acid and methanol [18]. A method 

was proposed for the preparation of 2-substituted 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one by 

adding 2-amino-3-carbethoxythiophene in anhydrous dioxane 

saturated with hydrogen chloride gas nitrile to a solution of  

2-amino-3-carbethoxythiophene in anhydrous dioxane [20]. 

2. Experimental 

2.1. Molecular modeling 

A virtual model of human acetylcholinesterase from the 

RCSB Protein Data Bank database was taken as an object 

for molecular docking with the identification number 

4EY7 [27]. The three-dimensional structures of the studied 

compounds were constructed in the HyperChem 8.0.4 pro-
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gram and then geometrically optimized by the MM+ meth-

od. The final geometry optimization of the virtual struc-

tures was calculated in the ORCA 4.1 program using the 

density functional theory (UB3LYP) method and the  

6-311G** basis set. The docking study was performed us-

ing the Autodock4 program. It was set to search for  

200 energetically favorable conformations of the ligand-

enzyme complex formation using the Lamarckian GA 4.2 

scoring function for calculating the energy of the ligand-

enzyme interaction. RMSD is 0.44 Å for donepezil. Molecu-

lar docking is presented in more detail in the following 

work [15]. 

2.2. Chemistry 

All chemicals were acquired from Sigma-Aldrich (Sig-

maAldrich, St. Louis, MO, USA), Carl Roth (Carl Roth, 

Karlsruhe, Germany) and Merck Chemicals (MerckKGaA, 

Darmstadt, Germany). Melting points (m.p.) were record-

ed using the PMP-M1 melting point apparatus (Him-

laborpribor, Klin, Russia). All reactions were monitored by 

thin-layer chromatography (TLC) using silica gel 60 F254 

TLC plates (Merck, Darmstadt, Germany). Spectroscopic 

data were registered with the following instruments: IR, 

IR-Fourier FSM 1201 spectrophotometer (Spectrum, Mos-

cow, Russia); UV, SF-2000 device (Spectrum, Moscow, 

Russia); 1H NMR and 13C NMR, Bruker Avance III 400 МHz 

spectrometer (Bruker, Germany) in DMSO-d6 using tetra-

methylsilane as the internal standard. Coupling constant 

(J) values are measured in hertz (Hz) and spin multiplets 

are given as follows: s (singlet), d (double), t (triplete), q 

(quartet), m (multiplet). 

2.2.1. General procedure for synthesis of azomethine deriv-

atives of 2-amino-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxamide (3a–3s) 

0.01 mol (1.92 g) of compound 1 and the equimolar 

amount of the corresponding aldehyde (2) were dissolved 

by heating in a minimum amount of ethanol. Then the so-

lutions were combined. The reaction was carried out until 

a precipitate was formed. It took about 30 minutes. The 

precipitate was filtered and purified by recrystallization 

from ethanol [15, 28]. 

2.2.2. General procedure for synthesis of 2-substituted 

5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one (4a–4s) 

Azomethine 3 (0.08 mol) was refluxed for 30–60 min in 

the glacial acetic acid. Then 1 ml DMSO was added and the 

reaction mixture was refluxed for 60 min. After cooling, 

the formed precipitate was filtered. In the filtrate the re-

maining target product was precipitated with a 0.1 М cold 

water solution of sodium chloride. The precipitates were 

combined. Recrystallization of the obtained compounds 

was carried out from acetic acid. Compounds 4a–4j, 4p, 4q 

were obtained earlier [29]. 

2.3. Pharmacological study 

2.3.1. Evaluation of anti-amyloid activity in vitro 

The fragments Aß 1-42 were obtained from Sigma-Aldrich 

(Germany). GV-971 was provided by Hunan warrant 

pharm. (China). The aggregation process of amyloid parti-

cles was evaluated in the reaction of the interaction of Aß 

with Congo red. 25 µl of a solution of the test compounds 

in dimethyl sulfoxide (the final concentration is 20 mg/ml, 

GV-971 in a similar concentration was used as a referent 

compound) was mixed with 225 µl of a 20 mM solution of 

congo red in phosphate buffer solution. The resulting mix-

ture was incubated at room temperature. Then the ab-

sorbance of the samples was recorded at wavelengths of 

540 nm and 405 nm. after nine days of incubation. The 

number of aggregates Aß was calculated by the following 

equation on the 3rd, 6th and 9th day of the experiment: 

 
(1) 

where A405BL is the absorbance of the Congo red solution 

at a wavelength of 405 nm; A540 and A405 are the ab-

sorbances of the solution containing the test substances at 

a wavelength of 540 nm and 405 nm, respectively. 

The difference between the compounds was evaluated 

by the ANOVA method with the Tukey post-test [30]. 

2.3.2. Evaluation of anticholinesterase activity in vitro 

The activity of acetylcholinesterase was determined by the 

modified Ellman method. The analyzed medium contained 

20 ml of acetylcholinesterase solution (3.2 U/l), 25 ml of a 

solution of the test compounds in various concentrations 

(30 mg/ml, 15 mg/ml, 7.5 mg/ml, 3.75 mg/ml and 

1.875 mg/ml) and a potassium-phosphate buffer solution 

in a volume of up to 300 ml. Donepezil (KRKA, Slovenia) 

in similar concentrations was used as a reference sub-

stance. The mixture was incubated for 5 minutes. The re-

action was started by adding the acetylcholine chloride 

(25 µl, 0.02 M solution) and 5.5'-dithiobis-2-nitrobenzoic 

acid (25 µl, 0.02 M solution). The absorbance of the mix-

ture was recorded after 5 minutes at 412 nm using the 

Infinite F50 microplate reader (Tecan, Austria). The tests 

were performed in a triplet version. IC50 (mg/ml) was cal-

culated by probit analysis. The data is presented in the form of 

M±SEM (mean ± standard error of the mean). Statistical dif-

ferences were evaluated at a significance level of p<0.05 by 

the ANOVA method with post-processing by Tukey [31]. 

3. Results and Discussion 

3.1. Synthesis 

As shown in Scheme 1, 2-amino-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxamide 1 and aldehydes 2 were 

refluxed in ethanol to obtain azomethine derivatives 3. 

The reactions were performed in ethanol as a green sol-

vent. Heterocyclization reaction was performed using gla-

cial acetic acid and DMSO to afford the 2-substituted 
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5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-

4(3H)-one 4. The products 4a-4s were obtained with the 

high yields. The compounds were characterized by nuclear 

magnetic resonance and infrared spectroscopy. 

3.1.1. 2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4k) 

The beige crystals were obtained. Yield: 85%. M.p.:  

293–294 °C. UV spectrum (ethanol), λmax, nm: 207, 337. IR 

spectrum (KBr), ν, cm–1: 3620 (NH), 3447 (OH, stretch-

ing), 2951 (Csp3–H), 1649 (C=O). 1H NMR spectrum 

(400 MHz, DMSO-d6), δ, ppm: 1.44 (s, 18H, CH3),  

1.87–1.71 (m, 4H, CH2), 2.72 (t, J = 6.0 Hz, 2H, CH2),  

2.90 (t, J = 5.9 Hz, 2H, CH2), 7.60 (s, 1H, OH), 7.84 (s, 2H, 

ArH), 12.50 (s, 1H, NH). 13C NMR spectrum (100,6 MHz, 

DMSO-d6), δ, ppm: 22.26, 23.00, 24.96, 25.83, 35.21, 

56.49, 120.46, 123.47, 131.14, 131.72, 139.13, 153.64, 

157.60, 159.56, 164.00. 

3.1.2. 2-(2-hydroxy-5-nitro-phenyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4l) 

The yellow crystals were obtained. Yield: 88%. M.p.:  

285–286 °C. UV spectrum (ethanol), λmax, nm: 220, 370. IR 

spectrum (KBr), ν, cm–1: 3466 (OH, stretching),  

2939 (Csp3-H), 1657 (C=O). 1H NMR spectrum (400 MHz, 

DMSO-d6), δ, ppm: 1.90–1.57 (m, 4H, CH2), 2.78 (t,

J = 5.9 Hz, 2H, CH2), 2.91 (t, J = 6.0 Hz, 2H, CH2), 7.12 (d,  

J = 9.1 Hz, 1H, ArH), 8.25 (dd, J = 9.2, 2.9 Hz, 1H, ArH), 

8.92 (d, J = 2.9 Hz, 1H, ArH), 12.84 (s, 1H, NH). 

3.1.3. 2-(5-bromo-2-hydroxy-3-methoxy-phenyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4m) 

The brown crystals were obtained. Yield: 95%. M.p.: 

T>300 °C. UV spectrum (ethanol), λmax, nm: 215, 235, 282. 

IR spectrum (KBr), ν, cm–1: 3455 (OH, stretching),  

2928 (Csp3-H), 1657 (C=O). 1H NMR spectrum (400 MHz, 

DMSO-d6), δ, ppm: 1.86–1.72 (m, 4H, CH2), 2.77 (t,  

J = 6.1 Hz, 2H, CH2), 2.89 (t, J = 6.1 Hz, 2H, CH2), 3.88 (s, 

3H, CH3), 7.30 (s, 1H, ArH), 7.84 (s, 1H, ArH), 11.84 (s, 1H, 

OH), 12.27 (s, 1H, NH). 

3.1.4. 2-(3-bromo-2-hydroxy-5-methyl-phenyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4n) 

The brown crystals were obtained. Yield: 93%. M.p.:  

287–288 °C. UV spectrum (ethanol), λmax, nm: 210, 390. IR 

spectrum (KBr), ν, cm–1: 3458 (OH, stretching),  

2928 (Csp3-H), 1658 (C=O). 1H NMR spectrum (400 MHz, 

DMSO-d6), δ, ppm: 1.86–1.70 (m, 4H, CH2), 2.28 (s, 3H, 

CH3), 2.78 (t, J = 5.8 Hz, 2H, CH2), 2.91 (t, J = 6.0 Hz, 2H, 

CH2), 7.60 (s, 1H, ArH), 8.07 (s, 1H, ArH), 12.93 (s, 1H, 

NH), 13.24 (s, 1H, OH). 

a

(4d)

b

(4i)

(3)

(4n)
(4l)

(1)

(4k) (4m)

(2)

(4g)

(4)

(4j)

(4o)

(4s)

(4h)

(4r)

R14=

R7 =

R12 =

(4a)

R8 =

R11 =

R10 =

R13 =
R15=

R9 =

R19 =

; ;

R18=;

(4b)

;

;

; ;

(4e)

;

(4f)

R4=
R1 = R2 =

R3 =

R6 =

R5 =; ; ;

;

(4c)

R16 =
R17 =

(4p) (4q)

;

;

;

;

;

;

 
Scheme 1 Reagents and conditions: (a) ethanol, reflux; (b) glacial acetic acid, DMSO, reflux. 
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3.1.5. 2-(3,5-dibromo-2-hydroxy-phenyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4o) 

The brown crystals were obtained. Yield: 92%. M.p.:  

290–291 °C. UV spectrum (ethanol), λmax, nm: 211, 389. IR 

spectrum (KBr), ν, cm–1: 3429 (OH, stretching), 2928 

(Csp3-H), 1653 (C=O). 1H NMR spectrum (400 MHz, DMSO-

d6), δ, ppm: 1.88–1.72 (m, 4H, CH2), 2.78 (t, J = 5.9 Hz, 2H, 

CH2), 2.89 (t, J = 5.8 Hz, 2H, CH2), 7.94 (d, J = 2.4 Hz, 1H, 

ArH), 8.44 (d, J = 2.3 Hz, 1H, ArH), 13.04 (s, stretching, 

2H, OH, NH). 

3.1.6. 2-(5-iodo-2-furyl)-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4r) 

The brown crystals were obtained. Yield: 79%. M.p.:  

297–298 °C. UV spectrum (ethanol), λmax, nm: 218, 283, 

353. IR spectrum (KBr), ν, cm–1: 3436 (NH, stretching),  

2928 (Csp3-H), 1649 (C=O). 1H NMR spectrum (400 MHz, 

DMSO-d6), δ, ppm: 1.84–1.74 (m, 4H, CH2), 2.75 (t,  

J = 6.1 Hz, 2H, CH2), 2.88 (t, J = 6.2 Hz, 2H, CH2), 6.97 (dd, 

J = 3.5, 1.6 Hz, 1H, ArH), 7.54–7.47 (m, 1H, ArH), 12.51 (s, 

1H, NH). 13C NMR spectrum (100,6 MHz, DMSO-d6), δ, 

ppm: 22.20, 22.89, 25.02, 25.76, 98.87, 121.46, 131.53, 

133.22, 143.14, 150.73, 158.55. 

3.1.7. 2-[5-(4-nitrophenyl)-2-furyl]-5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3d]pyrimidine-4(3H)-

one (4s) 

The brown crystals were obtained. Yield: 78%. M.p.: 

T>300 °C. UV spectrum (ethanol), λmax, nm: 204, 219, 399. 

IR spectrum (KBr), ν, cm–1: 3447 (NH, stretching),  

2932 (Csp3-H), 1645 (C=O). 1H NMR spectrum (400 MHz, 

DMSO-d6), δ, ppm: 1.85–1.71 (m, 4H, CH2), 2.75 (q, J = 3.9, 

2.3 Hz, 2H, CH2), 2.91 (t, J = 5.6 Hz, 2H, CH2), 7.53 (d,  

J = 3.7 Hz, 1H. ArH), 7.60 (d, J = 3.8 Hz, 1H, ArH),  

8.35–8.25 (m, 4H, ArH), 12.84 (s, 1H, NH). 13C NMR spec-

trum (100,6 MHz, DMSO-d6), δ, ppm: 22.19, 22.88, 25.05, 

25.80, 113.03, 116.85, 121.65, 124.70, 125.76, 131.65, 

133.27, 135.32, 143.75, 147.07, 147.33, 154.00, 158.65, 

162.98. 

3.2. Docking studies 

Based on the results of computational experiment, molecu-

lar complexes were selected, in which the simulated com-

pounds occupy the most energetically advantageous loca-

tion in the active site of the acetylcholinesterase enzyme. 

2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one mainly formed bonds with the 

following amino acid residues of the active site of AChE: 

Tyr 124, Trp 286, Val 294, Phe 295, Arg 296, Phe 297, Tyr 

337, Phe 338, Tyr 341 and His 447. 

Table 1 shows the minimum energies for the formation 

of ligand complexes with the active site of AChE and the 

hydrogen bonds. Figure 1 and 2 shows locations of 4a–4s 

according to molecular docking. 

Table 1 Results of molecular docking experiments for compounds 

4a–4s, donepezil and its hydrogen bonds. 

Compound 

AutoDock 

binding 
energy 

(kcal/mol) 

Residue 
Ligand 
atoms 

Distance 
(Å) 

4a –9.05 – – – 

4b –10.16 
Arg 296 OH 1.979 

Ser 293 OH 2.141 

4c –9.23 Ser 293 OH 2.041 

4d –9.55 Phe 295 OCH3 2.199 

4e –10.29 Arg 296 OH 1.679 

4f –10.29 
Phe 295 OH 1.895 

Arg 296 OCH3 2.146 

4g –9.95 

Ser 293 OH 1.804 

Arg 296 OH 1.898 

Arg 296 OH 1.895 

4h –9.55 – – – 

4i –9.48 – – – 

4j –10.86 Phe 295 C=O 2.225 

4k –10.30 – – – 

4l –9.67 

Phe 295 C=O 2.155 

Arg 296 OH 2.064 

Arg 296 OH 2.188 

4m –11.64 
Arg 296 OCH3 2.211 

Phe 295 OH 2.153 

4n –10.52 
Phe 295 C=O 2.128 

Ser 293 OH 1.822 

4o –10.84 Phe 295 OH 2.104 

4p –9.05 Arg 296 FurO 1.891 

4q –8.93 Phe 295 C=O 1.700 

4r –9.71 Phe 295 –S– 2.222 

4s –10.67 Arg 296 NO2 1.903 

donepezil –11.89 Phe 295 C=O 1.770 

The compounds 4b, 4c, 4g and 4n form a hydrogen 

bond between their hydroxy groups and the amino acid 

residue Ser 293. The structures 4b, 4e, 4g and 4l by the 

same structural fragment can make a hydrogen bond with 

Arg 296. The compounds 4p and 4s form a hydrogen bond 

with Arg 296 by oxygen atoms of the furan heterocycle 

and the nitro group, respectively. It is often seen that the 

simulated compounds can form a hydrogen bond in a lig-

and-enzyme complex with Phe 295. 4j, 4l, 4n and 4q inter-

act with Phe 295 with their carbonyl groups, and 4r mole-

cule forms a hydrogen bond between Phe 295 and the sul-

fur atom of the thiophene heterocycle. Three compounds 

among the simulated structures 4f, 4m and 4o with the 

above amino acid residue interact with the oxygen atom of 

the hydroxy group of the aryl fragment of the molecule. It 

follows from the docking results that compounds 4f and 

4m can form a hydrogen bond with the Arg 296 oxygen 

atom by the methoxy group, and in the structure of 4d 

similarly structural fragments interacts with Phe 295 by 

forming a hydrogen bond with a length of 2.199 Å. Accord-

ing to the molecular docking data for 4a, 4h, 4i and 4k, the 

formation of hydrogen bonds is not observed. Donepezil 

makes a hydrogen bond between the oxygen atom of the 

carboxyl group of the five-membered cycle of the molecule 

and the amino acid Phe 295 of the active site of the en-
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zyme. Many 2-substituted 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one 

form a hydrogen bond with Phe 295, as does the donepezil. 

There is no non-bonding interactions such as van der 

Waals, π–π, π–alkyl according to this docking protocol. 

3.3. Pharmacological studies 

The results of the antiamyloid activity evaluation of the 

test substances are presented in Table 3. 

As can be seen from the data in Table 3, the compounds 

4c, 4e, 4k and 4m have the highest ability to inhibit the 

formation of β-amyloid in the model mixture. At the same 

time, the compounds 4c, 4e significantly suppressed the 

process of amyloidogenesis after 3 days of incubation. It is 

worth noting that on the 9th day of the experiment, all the 

leading compounds showed a comparable level of pharma-

cological efficacy, which, however, was lower than that of 

GV-971. 

4a 

 

4b 
 
 

 

4c 

 

4d 

 

 

4e 

 

4f 

 

4g 

 

4h 

 
Figure 1 The location of 4a–4h according to molecular docking. 
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4j 

 

 

4k 

 

4l 

 

4m 

 

4n 

 

4o 

 

4p 

 

 

4q 

 
 

4r 

 

4s 

 
 

Figure 2 The location of 4i–4s according to molecular docking. 

As can be seen from the data obtained, the highest an-

ticholinesterase activity was established for the com-

pounds 4d, 4e and 4f, surpassing that of the referent. The 

substances 4c, 4g, 4h, 4j, 4k, 4m, 4n and 4p showed slight-

ly lower activity, the effect of which did not differ statisti-

cally from that of donepezil. 

3.4. Structure-activity relationship of the studied 

compounds 

In general, the results of molecular docking of the predict-

ed structures are in a good agreement with the results of 

the primary pharmacological screening of anticholinester-
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ase activity in vitro of 2-substituted 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one. 

The most active compounds inhibiting AChE are thienopy-

rimidines, containing in the second position of the hetero-

cycle pyrimidine-4(3H)-one fragment with hydroxy and 

methoxyphenyl substituents (4d, 4e and 4f). 

Table 2 The effect of the studied compounds and GV-971 on the 

aggregation of amyloid particles. 

Compounds 
% of inhibition 

3th day 6th day 9th day 

4a 10.2±1.2* 34.5±1.6* 67.5±2.3* 

4b 10.7±1.0* 42.5±2.5* 55.1±2.0* 

4c 24.5±3.9* 32.2±3.8* 66.4±1.2* 

4d 14.2±2.1* 38.6±2.4* 57.9±1.2* 

4e 22.2±1.5* 39.1±2.2* 67.2±3.6* 

4f 16.8±3.8* 38.1±1.5* 60.8±3.7* 

4g 13.9±3.7* 33.7±2* 60.4±2.9* 

4h 13.4±3.9* 42.9±3.6* 57.3±3.6* 

4i 15.5±1.6* 36.5±3.7* 62.7±1.3* 

4j 12.3±1.5* 45±2.9* 50±1.8* 

4k 16.4±1.6* 55.3±2.3* 69.4±2.5* 

4l 18.7±2.6* 38±2.9* 50±1.2* 

4m 21.1±2.7* 49±3.5* 72.8±1.9* 

4n 16.9±1.6* 31.2±3.3* 60.4±2.4* 

4o 16.2±2.8* 34.9±3.1* 55.9±3.9* 

4p 22.2±3.2* 43±1* 54.7±3.4* 

4q 18.1±1.6* 32.2±2.8* 58±4* 

4r 23.5±2.6* 41.3±3.4* 52.3±1.2* 

4s 15.1±2.1* 41.2±3.4* 52.9±1.4* 

GV-971 33.5±2.4 65.2±3.9 86.3±2.5 

* – statistically significant relative GV-971 (ANOVA with the Tuk-

ey post-test, p<0,05) 

Table 3 The effect of the studied compounds and donepezil on the 
acetylcholinesterase activity. 

Compounds IC50, mg/ml 

4a 6.31±0.091* 

4b 5.36±0.087* 

4c 3.10±0.031 

4d 1.17±0.064* 

4e 1.24±0.027* 

4f 1.11±0.044* 

4g 3.08±0.084 

4h 3.75±0.058 

4i 5.99±0.021* 

4j 4.52±0.034 

4k 3.19±0.044 

4l 5.42±0.012* 

4m 3.22±0.021 

4n 3.68±0.092 

4o 5.23±0.061* 

4p 3.75±0.071 

4q 5.82±0.025* 

4r 4.92±0.074* 

4s 4.57±0.096* 

donepezil 2.40±0.06 
* – statistically significant relative donepezil (ANOVA with the 

Tukey post-test, p<0,05) 

These compounds are superior in the effectiveness to the 

drug Donezepil. It should be noted that for the acyclic pre-

cursors of azomethine derivatives of 2-amino-4,5,6,7-

tetrahydro-1-benzothiophene-3-carboxamide, substances 

with similar substituents showed better activity. This fact 

indicates the significance of these pharmacophores. To a 

lesser extent, the 4c and 4g substances containing only 

hydroxyphenyl groups as a pharmacophore fragments ex-

hibit the anticholinesterase activity. Among the com-

pounds having a furan heterocycle, the compound 4p has 

the greatest ability to inhibit AChE. The analysis of 

thecompounds 4j and 4k containing a tert-butyl radical in 

a hydroxyphenyl fragment allows us to judge its effect on 

the pharmacological properties of these structures. Partic-

ularly interesting is the remainder of the sterically hin-

dered phenol contained in the 4k compound. Among the 

halogen-derived target products, 4o containing two bro-

mine atoms in the 3,5 positions of the phenyl substituent 

showed the least activity. Compounds that do not contain 

hydroxy, methoxy and bromophenyl substituents have 

weak inhibitory properties of AChE, which is in a good 

agreement with the results of molecular docking and con-

firms the revealed tendency of the influence of electron-

donating substituents in the 2-substituted phenyl fragment of 

the condensed thiophenpyrimidine system. Figure 3 shows 

the location of donepezil and 4d in the active site of AChE. 

 
Figure 3 The location of donepezil determined by X-ray diffraction 
analysis (blue color) and the location of 4d according to molecular 

docking (green color). 

Figure 4 shows the location of the donezepil molecule 

corresponding to the data of X-ray diffraction analysis in the 

4EY7 molecular complex and the positions of 2-substituted 

5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-

one with hydroxy-methoxyphenyl fragments. 

 
Figure 4 The location of donepezil determined by X-ray diffraction 
analysis (A – red color) and the location according to molecular dock-

ing: 4d (B – blue color), 4e (C – green color), 4f (D – yellow color). 
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It can be seen that the aryl fragments 4d, 4e and 4f 

with methoxy and hydroxy groups occupy a similar posi-

tion with the same structural element of Donezepil. Thus, 

it is possible to assume similar molecular mechanisms of 

inhibition of AChE in the predicted compounds and their 

prototypes, as well as the importance of the hydroxy-

methoxyphenyl fragment for the process of inhibition of 

the enzyme. 

The study of the ability of synthesized compounds to 

aggregate amyloid particles allowed us to determine that 

the most active are tetrahydrothienopyrimidines with 5-

bromo-2-hydroxy-3-methoxyphenyl (4m) and 3,5-di-tert-

butyl-4-hydroxyphenyl (4k) substituents containing di-

tert-butyl and bromine-substituted hydroxy-

methoxyphenyl fragments in the second position of the 

pyrimidine-4(3H)-one heterocycle. Of the compounds with 

hydroxy-methoxyphenyl substituents, the substance 4e 

containing an isovaniline residue in its structure showed 

the greatest activity. The compound 4a, which has an 

unsubstituted phenyl substituent, also inhibits the 

aggregation of amyloid particles well.  

The resulting combination of pharmacological proper-

ties of the studied objects, namely, the combination of the 

ability to suppress amyloidogenesis and anticholinestrease 

activity, opens up certain prospects in terms of the thera-

peutic use of these compounds. So, it is known that amy-

loidogenic processes underlie irreversible neurodegenera-

tive diseases, in particular, Alzheimer's disease [32]. The 

development of drugs for the treatment of Alzheimer's 

disease is an extremely difficult task. Since 2003, exten-

sive preclinical and clinical studies of promising molecules 

have been conducted, but none of them has been put into 

practice. As of 2021, not a single drug has been registered 

that directly affects the pathogenesis of the disease. But, 

at the same time, a purposeful search for substances that 

can prevent a neurodegeneration is ongoing [33]. Accord-

ing to Cummings et al., the most promising direction for 

the development of new therapeutic agents for the treat-

ment of Alzheimer's disease is the suppression of the for-

mation of β-amyloid. The most promising in this regard 

are purposefully obtained monoclonal antibodies, which 

are at different stages of clinical trials: Solanezumab; Gan-

tenerumab; Crenezumab; Aducanumab [34]. But it is im-

possible to deny the possibility of using small molecules to 

suppress the formation of amyloid fragments. It should be 

emphasized that in addition to pathogenetic, symptomatic 

treatment is also important, which, as a rule, is aimed at 

eliminating cholinergic deficiency [35]. In this regard, the 

combination of pharmacological properties of 2-

substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one may be a new vector of therapy 

for Alzheimer's disease, combining both the effect on the 

pathogenesis of the disease and the elimination of its lead-

ing symptoms. 

4. Conclusions 

In the course of the research, a method for the synthesis of 

2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidine-4(3H)-one was proposed, according to which 

new representatives of this class of organic compounds 

were obtained. Among the studied compounds there are 

substances with the high anticholinesterase activity. The 

most active are tetrahydrothienopyrimidine derivatives 

containing hydroxy-methoxyphenyl substituents in their 

structure. The compounds with fragments of 5-bromo-2-

hydroxy-3-methoxyphenyl and 3,5-di-tert-butyl-4-

hydroxyphenyl have the highest antiamyloid activity. As a 

result of the studies, the expediency of searching for new 

highly effective compounds for the treatment of neuro-

degenerative diseases in the series of tetrahydro-

benzthienopyrimidine-4(3H)-one was confirmed. 
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