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Abstract 

The basic element of the design of a power module is a metallized ce-

ramic substrate. In this work, the formation of metallization coatings 

by the method of thermal transfer of metallization pastes (Mo-Mn-Si 

+ binder) for alumina and aluminum nitride ceramics was carried 

out. The fixing of the metallization coating on the ceramic substrate 

was performed by firing at a temperature of 1320 °C. The subsequent 

deposition of the copper layer was carried out by the method of cold 

gas-dynamic spraying (CGDS) followed by annealing of the deposited 

coating. For high-quality adhesion, the optimum annealing tempera-

ture was 1000 °C. 
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Key findings 

● The technology of a two-layer metallization coating on ceramic substrates made of aluminum nitride 

and oxide was developed. 

● The resulting copper coatings are characterized by a strong adhesive bond with the base and low elec-

trical resistance (at the level of 3·10–6 Ohm·cm). 

● For high-quality adhesion, the optimum annealing temperature was 1000 °C. 

 

1. Introduction 

Cold gas dynamic spraying (CGDS) is a relatively new 

modification of cold spraying techniques that uses con-

verging-diverging (De Laval) nozzle at a supersonic veloci-

ty to accelerate different solid powders towards a sub-

strate on which they are plastically deformed. This defor-

mation results in adhesion to the surface. CGDS is one of 

the innovative cold spraying processes with fast-growing 

scientific interests and industrial applications in the fields 

of aerospace, automotive and biotechnology. Cold spray 

research and development efforts have doubled during the 

last decade and along with new industry applications and 

novel demands provide both a strong body of knowledge 

and market pull to identify and address these roadblocks. 

[1, 2]. Due to the high strain rate deformation of particles 

in (CGDS), in situ investigation is challenging. Metallurgi-

cal bonding is one of the main adhesion mechanisms of 

particles during coating buildup [3]. The properties of the 

kinetically deposited coating layer are significantly affect-

ed by the microstructure of the coating. The most power-

ful influencing factors in microstructural evolution of ki-

netic-sprayed coating layers are instant generation of 

thermal energy and high-strain, high-strain-rate plastic 

deformation at the moment of particle impact [4]. Heat 

treatment of the 316 L austenitic steel coating improves its 

mechanical properties [5]. In [6] the microstructure of the 

coating obtained by cold gas-dynamic spraying was inves-

tigated. A Cu-Al2O3-Zn powder blend was sprayed onto a 

copper substrate to restore a worn copper contact wire. 

The coating thickness was 1–2.5 mm. Improved adhesion 
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strength was achieved through substrate surface prepro-

cessing with coarse Al2O3 particles. 

To obtain the pattern of an electronic power module, 

ceramic substrates should be metallized. Therefore, con-

ducting layers, over 300 µm thick, are deposited by differ-

ent techniques to form multilevel metallization [7]. While 

in production and operation, the metallized structures of 

power modules are exposed to thermal and mechanical 

stresses.  

The research objective is to optimize the technique of 

thick copper layers deposition onto ceramic substrates 

used in power electronics. 

We considered the use of finely-dispersed PMVD-0, 

PMVD-1 and coarse PMС-1 copper powders for their sput-

tering by gas dynamic cold spray technique (GDCS). 

After preliminary experimental studies of gas dy-

namic cold spray technique (GDCS), we made a choice 

of PMС-1 copper powder (GOST 4960-2009) as the most 

appropriate, affordable and cheap. 

The basic element of the power module structure is 

considered to be a metallized ceramic substrate with the 

power semiconductor crystal, which is used for imple-

menting two main functions: firstly, for electrical isola-

tion of conductor buses patterned on one or both sides; 

secondly, for the conductance of heat emitted by the ac-

tive elements of the electronic power module to heat ra-

diators. Besides their high heat conductivity, the sub-

strates of power modules must be very strong, heat- and 

chemically resistant. In this regard, we use the sub-

strates made from different grades of aluminum oxide 

ceramics and aluminum nitride ceramics providing high 

dissipation capacity. Based on the properties analysis 

carried out for ceramic materials applied by DBC tech-

nology abroad [8, 9], we come to the conclusion that 

aluminum oxide ceramics with the content of aluminum 

oxide exceeding 95% is more frequently used, but alumi-

num-nitride ceramics with the content of nitride oxide, 

which is more than 98%, is suitable for the circuits with 

high specific dissipation capacity. Taking into account 

their main characteristics, aluminum-oxide ceramic sub-

strates for DBC boards made by СЕТС (China) are compa-

rable with ВК96 substrates produced by JSC NEVZ-

Ceramics (Russia). However, their characteristics are 

inferior to the ones of ВК100 ceramics produced by JSC 

NEVZ-Ceramics (Russia), where the content of the basic 

substance is equal to 99.7% (in contrast to VК-96 ceram-

ics with 96% content of the base material). 

With regard to their physical properties, aluminum-

nitride ceramics (AlN) is characterized by high thermal 

conductivity (170–200 W/m·К) and electrical resistance 

stability (1013–1014 Ohm·cm) when the temperature is 

increasing [10–13]. In Russia JSC NEVZ-Ceramics special-

izes in manufacture of aluminum-nitride ceramic sub-

strates [9]. Produced at this enterprise, aluminum-

nitride substrates are characterized by high thermal con-

ductivity of 160–185 W/m·К, isolation and strength pa-

rameters at the level of world’s brands, such as MARUVA 

(Japan), LEATEC (Taiwan), ClecGroup (China), CeramTec 

(Germany). 

The substrates are produced by slip casting tech-

nique followed by annealing of aluminum-oxide ceram-

ics at 1650 °С and aluminum-nitride ceramics at 

1850 °С. 

2. Experimental 

Metallized coatings (MC) formation was tested by the heat 

transfer of two metallization pastes compositions for alu-

minum-oxide and aluminum-nitride ceramics. 

Pastes compositions: 

А. Mo-Mn-Si+Ta2O5+ZrO2+TiH2+binder. 

B. Mo-Mn-Si+ binder. 

The organic binder for the metallization pastes con-

tains: ethylcellulose-100, α-terpineol, dibutylphthalate and 

oleic aсid. 

Surface preparation is considered to be one of the main 

stages of metallized coating formation on ceramics. Ce-

ramic substrates had been mechanically polished before 

metallization to obtain alignment and surface roughness 

of Ra = 0.15 µm. 

MC bonding on the ceramic substrates was achieved 

via its annealing. In this regard, nitrogen-hydrogen 

through- and pusher-type furnaces were used. The furnac-

es consist of 5 mullite muffles, which are 90 cm long. The 

muffles are located in series to provide a continuous 

channel with 3 temperature ranges. Annealing was carried 

out with 30 minutes exposure at 1320 °С. 

The GDCS technique is based on acceleration of  

1–150 µm particles with a supersonic gas flow up to the 

speed of 500–1200 m/s. The particles colliding with an 

obstacle tend to bond on it without melting [14, 15]. 

Meanwhile, the substrates are not strongly affected by 

temperatures. 

Sputtering was carried out on VK-96 aluminum oxide 

substrates with the dimensions of 30290.3 mm, and 

with a Mo-Mn-Si sublayer being 10–20 μm thick. PМС-1 

copper powder was used for sputtering. 

Formation of metallized coatings from copper pow-

ders was carried out according to typical GDCS diagrams 

with the use of a planar contracting-expanding nozzle 

with 3.053.05 mm critical cross section and 

9.53.05 mm exit geometry. The rate of powder con-

sumption from a dispenser was set to 0.1 g/s. The dis-

tance of sputtering was equal to 30 mm; the nozzle scan-

ning velocity against the substrate varied from 5 to 

50 mm/sec. Air was chosen as a carrier and working gas. 

The deposition was conducted on the GDCS ITAM SB RAS 

test installation. The substrates were split into two 

batches after sputtering. Then annealing was carried out 

in the hydrogen medium at different temperatures to 

determine the optimal thermal mode. 



Chimica Techno Acta 2022, vol. 9(3), No. 20229307 LETTER  

3 of 4 

3. Results and discussion 

Since the products obtained are operated in air, the re-

sistance of the coatings in aggressive media (acids or 

base solutions) was not determined. It is also known that 

semiconductor devices with these products are operated 

at low temperatures (not exceeding 125 °C). For this rea-

son, the thermal stability of coatings was not studied. 

The most important performance characteristics of coat-

ings are adhesion resistance and low electrical  

resistivity. 

The key parameters were determined after annealing 

as follows: the measured values of adhesion and intrinsic 

resistance were compared with the same parameters for 

DBC-substrates produced in Germany and China (Table 1). 

1000 °С appeared to be the optimum annealing tempera-

ture for adhesion. The best results are peculiar to DBC-

substrates with the lowest resistance, which is close to the 

resistance of pure copper. The substrates with thick cop-

per layers sputtered by the GDCS technique are character-

ized by the key parameters close to the values of DBC-

substrates, despite the use of copper powder to obtain the 

copper coatings.  

4. Conclusions 

The technology of applying a two-layer metallization coat-

ing on ceramic substrates made of nitride and aluminum 

oxide was developed. Initially, a layer of molybdenum-

manganese-silicon was deposited on the surface of the 

substrates by burning in a nitrogen-hydrogen medium for 

30 minutes at a temperature of 1320 °C. At the second 

stage, a layer of copper was deposited by the CGDS meth-

od with a flat Laval nozzle. The working gas was air. After 

deposition, annealing was carried out in hydrogen atmos-

phere. The optimal annealing temperature was 1000 °C. 

The obtained coatings are characterized by a stable adhe-

sive bond of the copper coating with the base (the adhe-

sion value exceeds 60 MPa) and low electrical resistance 

(at the level of 3·10–6 Ohm·cm). 
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Table 1 Measurement results of adhesion and intrinsic resistance. 

No. Sample 
Adhesion 

MPa 

Average value 
of intrinsic 

resistance 
ρ·106, Ohm·cm 

1 
GDCS, Al2O3 + MoMnSi + 
Cu, 850 °С 

63.7 2.95 

2 
GDCS, Al2O3 + MoMnSi + 

Cu, 850 °С 
51.7 3.05 

3 
GDCS, Al2O3 + MoMnSi + 

Cu, 950 °С 
65.3 3.18 

4 
GDCS, Al2O3 + MoMnSi + 

Cu, 1000 °С 
66.2 3.22 

5 
GDCS, Al2O3 + MoMnSi + 
Cu, 1000 °С 

67.2 3.30 

6 
GDCS, AlN + MoMnSi + 
Cu, 850 °С 

8.3 2.91 

7 
GDCS, AlN + MoMnSi + 
Cu, 850 °С 

6.3 2.81 

8 
GDCS, AlN + MoMnSi + 
Cu, 950 °С 

20.2 2.92 

9 
GDCS, AlN + MoMnSi + 

Cu, 1000 °С 
31.3 3.07 

10 
GDCS, AlN + MoMnSi + 

Cu, 1000 °С 
33.0 2.98 

11 
DBC, Al2O3 + Cu, 1065–

1080 °С (Germany) 
59.0 2.40 

12 
DBC, Al2O3 + Cu, 1065–
1080 °С (China) 

28.5 2.90 
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