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Abstract 

Materials with perovskite or perovskite-related structure have many 
applications because of theirs different physical and chemical proper-
ties. These applications are extremely diverse and cover different 

fields including hydrogen energy. Layered perovskites with Ruddles-
den-Popper structure constitute a novel class of ionic conductors. In 

this paper, the effect of acceptor doping on the local structure and its 
relationship with transport properties were shown for layered perov-
skites based on BaLa2In2O7 for the first time. The geometric factor (the 

increase in the unit cell volume due to the increase in the ionic radii 
of cations) plays major role in the area of small dopant concentration 
(x < 0.15). The concentration factor (the increase in the oxygen va-

cancy concentration) is more significant in the area of big dopant con-
centration (x > 0.15). The acceptor doping is a promising way of im-

proving the oxygen-ionic conductivity of layered perovskite 
BaLa2In2O7. 
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1. Introduction 

Materials with perovskite or perovskite-related structure 

have many applications because of theirs different physical 

and chemical properties. These applications are extremely 

diverse and cover fields from biomedical applications, in-

cluding bone tissue engineering [1−5], to energetics, includ-

ing hydrogen energy [6−10]. The perovskite structure has a 

high tolerance to various kinds of substitutions. However, 

a significant change in the sizes and charges of ions leads 

to a change in the structure to the perovskite-related struc-

ture. Layered perovskites represent one of the large classes 

of perovskite-related materials and include such structural 

classes as Ruddlesden-Popper [11, 12], Dion-Jacobson [13], 

and Aurivillius [14−16] structures. They can exhibit photo-

catalytic [17−19], ferroelectric [20−22], and luminescent 

[23−25] properties. 

Several years ago, the possibility of ionic transport was 

revealed for the layered perovskites with the Ruddlesden-

Popper structure [26]. Materials based on BaNdInO4 [27–

32], SrLaInO4 [33–37], BaLaScO4 [38], BaLaInO4 [39–44], 

BaLa2In2O7 [45, 46] and BaNd2In2O7 [47, 48] were investi-

gated as oxygen-ionic and protonic conductors. The effect 

of the doping on the local structure and its relationship with 

transport properties was shown for layered perovskites 

based on BaLaInO4 [49, 50]. In this paper, the local struc-

ture of acceptor-doped (Sr2+
, Ba2+) layered perovskites 

based on BaLa2In2O7 (Figure 1a) was investigated for the 

first time. The influence of geometric (dopant radius) and 

concentration (dopant concentration) factors on the ionic 

conductivity was revealed. 

2. Experimental 

The solid solutions BaLa2–xSrxIn2O7–0.5x and BaLa2–xBaxIn2O7–0.5x 

were obtained by a solid state method. The carbonates 

BaСО3, SrСО3 and the oxide In2О3 were initially dried and 

then weighed and mixed in stoichiometric quantities. The 

chemical reactions can be written as: 

BaCO3 + xSrCO3 + (1−0.5x)La2O3 + 0.95In2O3 →  

BaLa2–xSrxIn2O7–0.5x + (1+x)CO2 
(1) 

(1+x)BaCO3 + (1−0.5x)La2O3 + 0.95In2O3 →  

BaLa2–xBaxIn2O7–0.5x + (1+x)CO2. 
(2) 

The reagents were milled in an agate mortar and then 

calcined at 800−1300 °С with the steps of 100 °С 
and the duration of calcination 24 h. The intermediate re-

grindings followed every heating step. 
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The Bruker Advance D8 diffractometer with Cu Kα radi-

ation was used for the monitoring of the phase purity of 

samples. The samples were prepared for XRD by heat 

treated at 1100 °C for 4 h and then cooled in dry Ar  

(pH2O = 3.5·10−5 atm). Ar atmosphere was used to avoid 

any carbonization of the samples. 

Raman spectra were collected on the modular confocal 

Raman microscopy system Alpha 300 AR (WiTec, Ger-

many). The 10x objective lens (numerical aperture 0.2) 

were used to focus the blue laser (l = 488 nm, 1800 g/mm 

exposure time 5 seconds, averaging three spectra) to a spot 

size around 3 μm. The spectral resolution was 1.22 cm−1. 

The RayShield coupler with a specialized narrow band filter 

was used to cut off the Rayleigh scattering. 

3. Results and Discussion 

The homogeneity ranges of the solid solutions  

BaLa2–xSrxIn2O7–0.5x and BaLa2–xBaxIn2O7–0.5x were estab-

lished using X-ray analysis. The compositions with x ≤ 0.2 

mol for BaLa2–xSrxIn2O7–0.5x and x ≤ 0.3 mol for  

BaLa2–xBaxIn2O7–0.5x were single-phase. All samples belong 

to the P42/mnm space group (tetragonal symmetry). Fig-

ure 1b represents the XRD patterns for Sr-doped composi-

tion BaLa1.9Sr0.1In2O6.95 as an example of the full-profile 

data fitting. The lattice parameters and unit cell volumes of 

doped compositions increased with increase in the dopant 

concentration (Figure 1c) because of the bigger ionic radii of 

the dopants (𝑟𝐿𝑎3+ = 1.216 Å, 𝑟𝑆𝑟2+ = 1.31 Å, 𝑟𝐵𝑎2+ = 1.47 Å 

[51]). Local structure of the obtained compositions was in-

vestigated using the Raman spectroscopy method. The Ra-

man spectra of solid solutions BaLa2–xBaxIn2O7–0.5x and BaLa2–

xSrxIn2O7–0.5x are presented in Figures 2a and 2b, respectively.  

The Raman spectra of all investigated compositions can 

be divided in two general regions. The first region includes 

the bending and stretching vibrations of polyhedra contain-

ing cations with bigger ionic radii (barium, strontium, lan-

thanum). This is a region of low, 120−200 cm−1
, wave-

numbers. The modes ν1, ν2, ν3 and ν4 are observed in this 

region. They can be attributed to the M−O stretching and 

O−M−O bending vibrations of [BaO12] and [LaO9] polyhedra 

[49, 50, 52, 53]. The second region includes the tilt-

ing/bending and stretching vibrations of In-contained pol-

yhedra and locates higher than 200 cm−1 wavenumbers. The 

tilting/bending vibrations of polyhedra [InO6] are de-

scribed by the ν5, ν6, ν7, ν8, and ν9 bands. The stretching vi-

brations of In-contained polyhedra should be located in the 

higher wavenumbers. The stretching vibrations of In−O 

bonds appear around 400 cm−1 for the monolayer perov-

skite BaLaInO4 [49, 50]. The spectra of two-layer perov-

skites Srn+1TinO3n+1 [54] and Srn+1RunO3n+1 [55] contain two 

signals corresponding to the M−O stretching vibrations 

with lower and higher wavenumbers than the wave-

numbers for their monolayer analogs. Based on this, ν10, ν11 

and ν12 bands can be assigned to In−O stretching vibrations.  

Comparable analysis of the Raman spectra of solid solu-

tions BaLa2–xBaxIn2O7–0.5x and BaLa2–xSrxIn2O7–0.5x show that 

they are all similar to each other. On the one hand, doping 

leads to the increase in the oxygen vacancy concentration 

in the crystal lattice: 

2MO
La2O3
→   2MLa

′ +2OO
X + VO

••, (3) 

where MLa
′  – Sr or Ba ions in La sites, VO

•• –an oxygen va-

cancy, OO
X  – an oxygen atom in a regular position. Doping 

causes the decrease in the coordination number of metals. 

 
Figure 1 The scheme of acceptor doping of layered perovskite BaLa2In2O7 (a), XRD patterns for the composition BaLa1.9Sr0.1In2O6.95 (b) 

and dependences of unit cell volume on dopant concentration for the solid solutions BaLa2–xSrxIn2O7–0.5x and BaLa2–xBaxIn2O7–0.5x (c). 
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Consequently, the bond length M−O should decrease in 

the vacancy-containing polyhedra, and the blue shift in the 

Raman spectra can be expected. On the other hand, doping 

by the ions with bigger ionic radii leads to the increase in 

the unit cell volume (Figure 1c) which could be due to in-

crease of the bond length M−O. Based on this, the red shift 

in the Raman spectra can be expected. Obviously, the ab-

sence of significant shifts in the spectra of doped composi-

tions is the resulting effect of the overlay of these processes 

(Figure 2). Meanwhile, the acceptor doping of layered per-

ovskite BaLa2In2O7 is accompanied by the changes in the 

ionic radii of cations (geometric factor) and the concentra-

tion of oxygen vacancies (concentration factor). Both of 

these factors should affect the ionic conductivity. It should 

be noted that the effect of acceptor doping on the local 

structure of monolayer perovskite BaLaInO4 compared with 

that of the two-layer BaLa2In2O7 perovskite was more pro-

nounced [49, 50]. The monolayer perovskite structure con-

tains the octahedra layers bonded only by axial oxygens and 

non-bonded by apical oxygens, in contrast with two-layer 

structure where perovskite blocks contain the octahedrons 

connected by all six vertices. Obviously, the crystal lattice 

of a monolayer perovskite is more flexible and the changes 

in the local structure are more evident. 

Figure 3 represents the dependences of oxygen-ionic 

conductivity and mobility for the solid solutions  

BaLa2–xBaxIn2O7–0.5x and BaLa2–xSrxIn2O7–0.5x obtained in the 

previous work [46]. As can be seen, the maximum in the 

conductivity and mobility curves is observed at a relatively 

small (0.1−0.15) dopant concentration. The most probable 

reason of oxygen mobility increasing in the area of small 

dopant concentration is the increase in the unit cell volume, 

i.e. in the space for ionic transfer in the crystal lattice. The 

presence of significant dopant concentration can lead to the 

formation of defect associates because of the interaction be-

tween defects with opposite charges: 

MLa
′ +VO

••
        
→  (MLa

′ ∙ VO
••)• or (4) 

MLa
′ +(MLa

′ · VO
••)•

        
→  (2MLa

′ ∙ VO
••)X. (5) 

 
Figure 2 Raman spectra for the solid solutions BaLa2–xBaxIn2O7–0.5x (a) and BaLa2–xSrxIn2O7–0.5x (b).
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Consequently, the oxygen mobility should decrease. As 

we can see (Figure 3), the decrease in the oxygen mobility 

determines the decrease in the oxygen conductivity despite 

the increase in the oxygen vacancy concentration and the 

increase in the unit cell volume.  

Therefore, we can conclude, that ionic conduction in the 

acceptor-doped layered perovskite BaLa2In2O7 is deter-

mined by several factors, including geometric (dopant ra-

dius) and concentration (dopant concentration) factors. 

The geometric factor (the increase in the unit cell volume 

due to the increase in the ionic radii of cations) plays major 

role in the area of small dopant concentration (x < 0.15). 

The concentration factor (the increase in the oxygen va-

cancy concentration) is more significant in the area of big 

dopant concentration (x > 0.15), where formation of defect 

associates is more probable. 

4. Conclusions 

In this paper, the local structure of solid solutions  

BaLa2–xBaxIn2O7–0.5x and BaLa2–xSrxIn2O7–0.5x was investi-

gated. It was shown that several factors, including dopant 

radius and dopant concentration affect the changes in the 

oxygen ionic conductivity. The increase in the unit cell vol-

ume due to the increase in the ionic radii of cations (geo-

metric factor) plays major role in the area of small dopant 

concentration (x < 0.15). The increase in the oxygen va-

cancy concentration (concentration factor) is more signifi-

cant in the area of big dopant concentration (x > 0.15), 

where formation of defect associates is more probable. The 

acceptor doping is a promising way of improving the oxy-

gen-ionic conductivity of layered perovskite BaLa2In2O7. 
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