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Abstract 

Perovskite or perovskite-related structural materials are widely studied 

for their many functional properties. They can be used as components of 
electrochemical devices such as solid oxide fuel cells and electrolyzers. 
Layered perovskites can also be considered as promising materials for use 

in these devices. In this paper, the possibility of heterovalent (acceptor 
and donor) and isovalent doping of La and In sublattices of layered perov-
skites BaYLaInO4 and BaGdLaInO4 was made for the first time. The struc-

ture and electrical properties of these oxides were studied. Electrical con-
ductivity values increase in the series BaYInO4–BaLaInO4–BaGdInO4. How-

ever, the doping is an unsuitable strategy for improving the electrical 
properties of BaYInO4 and BaGdInO4 oxides. Further search for highly con-
ductive materials with the layered perovskite structure can be aimed at 

materials with a different composition of the cation sublattice. 
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Key findings 

● The success of the doping strategy for layered perovskites Ba(Sr)MInO4 depends on the nature of the cations. 

© 2024, the Authors. This article is published in open access under the terms and conditions of  

     the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
 

1. Introduction 

The complex oxides with high temperature protonic con-

ductivity are actively studied due to their potential applica-

tions in electrochemical devices such as proton-conducting 

fuel cells (PCFC) and electrolyzers (PCEC) [1–8]. The design 

and production of such devices is part of the strategy of sus-

tainable environmental development [9–16]. The most 

studied proton conductors are barium cerates-zirconates 

[17–24]. The barium zirconate crystallises in the classic 

perovskite ABO3 structure. However, several years ago the 

possibility of proton transport was demonstrated for lay-

ered [25–26] and hexagonal perovskites [27–29]. Layered 

perovskites such as complex oxides materials based on 

nickelates lanthanides can be considered as efficient cath-

ode materials [30–33]. Thus, the proton-conducting layered 

perovskites AA'BO4 are very promising materials from the 

point of view of manufacturing PCFC/PCEC based on elec-

trode and electrolyte with layered structure. The good 

comparability between electrode and electrolyte materials 

with the same type of crystal structure can be expected.  

Ionic conductivity for layered perovskites with the gen-

eral formula AA'BO4 were described for the compositions 

based on BaNdInO4 [34–39], SrLaInO4 [40–43], BaNdScO4 

[44], BaLaInO4 [45], BaYInO4 [38], BaGdInO4 [38]. It was 

shown that method of heterovalent and isovalent doping 

can increase the ionic conductivity values by up to 1.5 or-

ders of magnitude [25, 46, 47]. This paper first explores the 

possibility of heterovalent and isovalent doping of layered 

perovskites BaYInO4 and BaGdInO4. 

2. Experimental 

The compositions BaYInO4, BaY0.9La0.1InO4, BaY0.9CaInO3.95, 

BaY0.9SrInO3.95, BaY0.9BaInO3.95, BaYIn0.9Ti0.1O4.05, BaG-

dInO4, BaGd0.9La0.1InO4, BaGd0.9CaInO3.95, BaGd0.9SrInO3.95, 

BaGd0.9BaInO3.95, BaGdIn0.9Ti0.1O4.05 were prepared by the 

solid state method. The powders of the starting reagents  
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BaCO3, SrCO3, CaCO3, La2O3, In2O3, Y2O3, Gd2O3, TiO2 were 

dried and used in stoichiometric amounts. The agate mortar 

was used for grinding. The compositions were calcined af-

ter each grinding. The annealing was carried out in the tem-

perature range of 800–1300 °C with 100 °C step. 

The phase identification of the obtained compositions 

was carried out using the Bruker Advance D8 Cu Kα diffrac-

tometer. 

The electrical conductivity was measured with an im-

pedance spectrometer Z-1000P, Elins, RF. The investiga-

tions were carried out from 1000 to 200 °C with a cooling 

rate of 1o/min under dry air or dry Ar. The dry gas (air or 

Ar) was prepared by circulating the gas through P2O5 

(pH2O = 3.5·10−5 atm). The wet gas (air or Ar) was obtained 

by bubbling the gas at room temperature first through dis-

tilled water and then through a saturated solution of KBr 

(pH2O = 2·10−2 atm). 

3. Results and Discussions 

In this work, the isovalent doping of the lanthanum sublat-

tice, BaM0.9La0.1InO4 (M = Y, Gd), the heterovalent (accep-

tor) doping of this sublattice, BaM0.9M'InO3.95 (M = Y, Gd, 

M' = Ca, Sr, Ba), and the heterovalent (donor) doping of in-

dium sublattice, BaMIn0.9Ti0.1O4.05 (M = Y, Gd), were inves-

tigated. The XRD analysis showed that only matrix compo-

sitions, BaYLaInO4 and BaGdLaInO4, and the La-doped com-

positions, BaY0.9La0.1InO4 and BaGd0.9La0.1InO4, were ob-

tained as single phases. Figure 1 represents the analysis of 

XRD data for these samples. The percentage of the target 

phase in the non-single-phase samples was 60–80, depend-

ing on the dopant. 

The lattice parameters are provided in Table 1. The 

phases BaYInO4 and BaY0.9La0.1InO4 are indexed in the mon-

oclinic symmetry (space group P21/c). 

 
Figure 1 XRD patterns for the compositions BaYInO4 (a), BaY0.9La0.1InO4 (b), BaGdInO4 (c) and BaGd0.9La0.1InO4 (d). 
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The compositions BaGdInO4 and BaGd0.9La0.1InO4 are in-

dexed in the orthorombic symmetry (space group Pnma). 

The obtained data for the undoped compositions are in the 

good agreement with the previous reported data [38]. As 

can be seen, the introduction of lanthanum ions with 

slightly bigger ionic radii (𝑟𝐿𝑎3+ = 1.216 Å, 𝑟𝐺𝑑3+ = 1.107 Å, 

𝑟𝑌3+ = 1.075 Å [48]) leads to the increase in the lattice pa-

rameters and unit cell volume. Figure 2 represents the XRD 

data for the doped compositions based on BaGdLaInO4. The 

peaks belonging to unidentified impurities are marked. As 

we can see, the matrix phases BaYLaInO4 and BaGdLaInO4 

have less tolerance to doping compared with BaLaInO4, 

SrLaInO4 and BaNdInO4.  

It is known that significant influence is exerted not only 

by the symmetry of the crystal and the ratio of the sizes of 

the cations, but also by the nature of the cations. We can 

suggest that the presence in the cation sublattice of combi-

nation of Ba/Y and Ba/Gd ions is not suitable for the for-

mation of the oxygen defects (oxygen vacancy and oxygen 

interstitial) due to change in the energy of crystal compared 

with BaLaInO4.  

The typical EIS-plots are presented in Figure 3. The con-

ductivity values were calculated from the resistance values 

taken at the point of intersection of the high-frequency 

semicircle with the x-axis. 

The temperature dependencies of the conductivity val-

ues for the compositions BaGdInO4 and BaGd0.9La0.1InO4 

are presented in Figure 4a and Figure 4b, respectively. 

Table 1 Lattice parameters and unit cell volume for the 

investigated compositions. 

Compostion a, b (Å) c (Å) Vcell (Å
3) 

BaGdInO4 [38] 13.7829 5.8835 10.6255 

BaGdInO4 13.7828 5.8833 10.6261 

BaGd0.9La0.1InO4 13.8075 5.8947 10.6434 

BaYInO4 [38] 8.96 5.95 8.32 

BaYInO4 8.9661 5.9514 8.3253 

BaY0.9La0.1InO4 9.0083 5.9494 8.3435 

 
Figure 2 Comparison of XRD data for the compositions BaGdInO4, 
BaGd0.9Ca0.1InO3.95, BaGd0.9Sr0.1InO3.95, BaGdIn0.9Ti0.1O4.05 and 

BaGd0.9La0.1InO4. 

 
Figure 3 EIS plots for the compositions BaGdInO4 (a), BaGd0.9La0.1InO4 (b), BaYInO4 (c) and BaY0.9La0.1InO4 (d).  
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Figure 4 The temperature dependences of the conductivity for the compositions BaGdInO4 (a) and BaGd0.9La0.1InO4 (b) under dry (filled 

symbols) and wet (open symbols) conditions compared with data for BaGdInO4 obtained by Fujii et al. (red line) [38]. 

The conductivity values for the undoped BaGdInO4 com-

positions is higher that the data obtained by Fujii et al. [38]. 

Obviously, the reason for this is that the conductivity values 

in the work [38] were obtained in an atmosphere with un-

controlled humidity. The conductivity values under dry Ar 

(pO2 ~10−5 atm) are lower than those under dry air 

(pO2 = 0.21 atm), indicating the hole contribution to the 

electrical conductivity: 

1
2⁄ O2 ⇔ O𝑖

′′ + 2h• (1) 

Thus, the nature of the electrical conductivity under dry 

air is the mixed ionic-hole. The conductivity values under 

wet atmosphere is higher than under dry atmosphere which 

indicates the appearance of a proton contribution to con-

ductivity: 

H2O +  Oo
× ⇔ (OH)o

• + (OH)𝑖
′ (2) 

The temperature dependences of the conductivity values 

for the doped BaGd0.9La0.1InO4 composition are described by 

the same regularities (Figure 4b). However, the comparison 

of conductivity values for the compositions BaLaInO4, BaG-

dInO4 and BaGd0.9La0.1InO4 (Figure 5) indicates that doping 

of BaGdInO4 composition leads to the significant decrease 

in the conductivity values. At the same time, the Gd-con-

taining composition BaGdInO4 has higher conductivity val-

ues compared with La-containing composition BaLaInO4 

(about 0.5 order of magnitude).  

Figure 6 represents the temperature dependences of the 

conductivity values for the compositions BaYInO4 and 

BaY0.9La0.1InO4. The discussion made earlier for the Gd-con-

taining BaGdInO4 and BaGd0.9La0.1InO4 composition is also 

true for these the Y-containing compositions.  

The conductivity values for all considered samples un-

der dry air condition are presented in Figure 7. As we can 

see, among perovskites AA′BO4 electrical conductivity 

values increase in the series BaYInO4–BaLaInO4–BaGdInO4. 

In other words, Gd-containing composition is the most con-

ductive among these matrix compositions. However, the 

doping is non-suitable strategy for the improving the elec-

trical properties of this composition. The heterovalent 

(both acceptor and donor) doping does not allow obtaining 

single-phase compositions.  

The isovalent doping leads to the decrease in the con-

ductivity values. Further search for highly conductive ma-

terials with the layered perovskite structure can be aimed 

at materials with a different composition of the cation sub-

lattice. 

 
Figure 5 The temperature dependencies of the conductivity for the 

compositions BaLaInO4, BaGdInO4 and BaGd0.9La0.1InO4 in dry air.
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Figure 6 The temperature dependencies of the conductivity for the compositions BaYInO4 (a) and BaY0.9La0.1InO4 (b) under dry (filled sym-

bols) and wet (open symbols) conditions compared with data for BaYInO4 obtained by Fujii et al. (red line) [38]. 

4. Limitations 

The main limitation is the difficulty in predicting the 

transport properties of complex oxides. The method of het-

erovalent and isovalent doping of cationic sublattices of lay-

ered perovskites was successfully applied for the composi-

tions BaNdInO4, SrLaInO4, BaLaInO4 with similar structure. 

However, for investigated matrix compositions this strat-

egy was not successful. 

5. Conclusions 

In this paper, the possibility of heterovalent (acceptor and 

donor) and isovalent doping of La and In sublattices of lay-

ered perovskites BaYLaInO4 and BaGdLaInO4 was investi-

gated for the first time. It was shown that both heterovalent 

(acceptor and donor) doping does not allow obtaining sin-

gle-phase samples. The isovalent doping of Y(Gd) sublattice 

by La ions leads to the formation of single-phase composi-

tions BaY0.9La0.1InO4 and BaGd0.9La0.1InO4. It was shown 

that doped compositions are characterized by lower con-

ductivity values compared with undoped compositions. 

Among perovskites AA′BO4 electrical conductivity increases 

in the series BaYInO4 – BaLaInO4 – BaGdInO4. The nature of 

the electrical conductivity under dry air is the mixed ionic-

hole conduction for all compositions. Further search for 

highly conductive materials with the layered perovskite 

structure can be aimed at materials with a different com-

position of the cation sublattice. 
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