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Abstract 

The simple scaling of silicon transistors no longer ensures the advantages 

of high energy efficiency, driving research into nanotechnologies beyond 
silicon. Specifically, digital circuits based on carbon nanotube (CNT) field-
effect transistors promise significant advantages in energy efficiency. 

However, the inability to perfectly control internal nanoscale defects and 
the variability of carbon nanotubes hinder the realization of very large-
scale integrated systems. In this study, we investigated a novel method for 

fabricating transistors based on carbon nanotubes (CNTs) using epoxy 
mixtures, obtained the electrical properties of the transistors, and com-

pared their microstructure and composition via the scanning electron mi-
croscopy. The carrier mobility on epoxy-based transistors was 
28.87 cm²/V∙s, and the transistor switching frequency was 2.2 MHz. The 

samples exhibited electrical and physical stability over an extended period 
of time. The use of carbon nanotubes in epoxy resin as a conducting layer 
for transistors opens significant prospects in the field of electronics. The 

CNT-epoxy mixture technology allows for more flexible and rapid fabrica-
tion of thin-film transistors compared to classical methods. However, it is 

not appropriate to speak of a complete replacement; in this study, we pre-
sent an alternative method for producing thin-film transistors, which may 
be of interest for specific purposes. 
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Key findings 

● An alternative method for producing thin-film transistors was presented. 

● The carrier mobility was 28.87 cm²/V∙s, and the transistor switching frequency was 2.2 MHz. 

● CNT-epoxy mixtures have potential for thin-film device production, but require improved dispersion and film depo-

sition methods. 
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1. Introduction 

The exploration of carbon nanotubes (CNTs) and their ap-

plications has been a subject of extensive research within 

the scientific community. Various literature sources have 

highlighted the unique properties and potential applica-

tions of CNTs, providing a comprehensive understanding of 

their synthesis, characterization, and utilization in diverse 

fields. 

1.1. Mechanical, electrical, and functional  

properties of CNTs 

Initial studies on these materials have focused on elucidat-

ing their mechanical, electrical, and functional properties. 

Researchers have extensively documented the exceptional 

strength, flexibility, and electrical conductivity [1–4]. These 

properties were attributed to the unique structure of CNTs, 

consisting of rolled-up graphene sheets with sp2 hybridized 

carbon atoms. This structural arrangement allows for 
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efficient electron transport along the length of the nano-

tube, leading to high electrical conductivity [5–9]. Further-

more, the hollow cylindrical structure of CNTs contributes 

to their exceptional mechanical properties, making them 

ideal candidates for reinforcement in composite materials 

[1, 6–9]. 

1.2. Synthesis and characterization techniques 

The synthesis of CNTs has been a subject of significant in-

terest, with researchers developing various methods to pro-

duce nanotubes with specific properties [10, 11]. Literature 

reviews have extensively covered techniques such as arc 

discharge, chemical vapor deposition (CVD), and laser ab-

lation for the synthesis of CNTs [12–13]. Additionally, char-

acterization techniques such as transmission electron mi-

croscopy (TEM), scanning electron microscopy (SEM), and 

Raman spectroscopy have been employed to analyze the 

structure, morphology, and purity of samples [1, 2, 14]. 

These techniques play a crucial role in understanding the 

growth mechanisms and properties of CNTs, facilitating 

their integration into various applications. 

1.3. Applications of CNTs in composite materials 

The utilization of CNTs in composite materials has garnered 

considerable attention due to their ability to impart en-

hanced mechanical, electrical, and thermal properties. Lit-

erature sources have extensively discussed the incorpora-

tion of carbon nanotubes into polymer matrices to develop 

nanocomposites with improved strength, stiffness, and 

electrical conductivity [9]. Additionally, studies have ex-

plored the use of this materials as fillers in metal and ce-

ramic matrices to enhance the mechanical and thermal 

properties of composites [11, 15–17]. These applications 

highlight the versatility of CNTs in reinforcing various ma-

terials and their potential impact on industries such as aer-

ospace, automotive, and electronics. 

1.4. Challenges and future directions 

Despite the promising properties of CNTs, their widespread 

commercialization faces challenges related to scalability, 

cost-effectiveness, and environmental impact. Literature 

sources have addressed these challenges and proposed 

strategies to overcome them, including the development of 

scalable synthesis methods, functionalization techniques to 

improve compatibility with matrices, and recycling pro-

cesses to mitigate environmental concerns [12, 13, 18]. Fur-

thermore, ongoing research aims to explore novel applica-

tions of CNTs in emerging fields such as energy storage, bi-

omedicine, and environmental remediation, indicating the 

continued relevance and potential of these nanomaterials 

[19–21]. 

1.5. CNT/epoxy-masterbatch based nanocomposites 

Traditionally, CNT-epoxy mixtures have been explored for 

various purposes. They offer a promising combination of 

mechanical support from the epoxy and the unique electri-

cal properties of carbon nanotubes [22–23]. This synergy 

can be harnessed in applications like conductive adhesives, 

shielding materials, and even structural components for 

electronic devices [8, 25–27]. 

Having experience working with CNTs to create nano-

composite materials, we can find areas of application of 

CNTs in electronics [28–30]. This study extends the explo-

ration initiated in a previous study in the development of 

nanocomposite thin film structures utilizing poly-ar-

ylenephthalide matrices with single-walled carbon nano-

tubes (SWCNT) and graphene oxide fillers [31]. It builds 

upon the advancements in hybrid molecular systems re-

ported elsewhere, particularly in the synthesis of hybrid 

molecules incorporating fullerene C60 and dithi-

enylethenes for optically controlled organic field-effect 

transistors (OFETs) [32]. Furthermore, it draws inspiration 

from optically controlled OFETs described in other studies 

utilizing photochromic spiropyran and fullerene C60 films 

[33–34]. These investigations lay the groundwork for our 

current endeavor, which focuses on the integration of car-

bon nanotubes within epoxy matrices to elucidate their 

combined effects on electrical conductivity and transistor 

performance in organic thin-film transistors (OTFTs). In 

doing so, we aim to contribute to the ongoing exploration 

of electrical properties in polymer films and heterostruc-

ture materials, as previously investigated elsewhere [35–

36]. Our study aspires to unravel the intricate interplay be-

tween CNT dispersion, charge transfer mechanisms, and 

film morphology within the context of OTFTs, thereby ad-

vancing the development of next-generation functional ma-

terials for organic electronics. 

2. Materials and Methods 

2.1. CNT thin films: substrate preparation, SEM, 

EDX 

Crystalline silicon substrates with an aluminum oxide sub-

layer were employed for thin film deposition. The sub-

strates were chemically cleaned with acetone to remove or-

ganic contaminants and then placed in a vacuum installa-

tion to avoid further contamination and the deposition of 

dust particles on them. 

The growth of carbon nanotubes on the silicon substrate 

with iron catalyst was achieved via chemical vapor deposi-

tion (CVD). The process involved the formation of na-

nosized iron droplets on the substrate surface, followed by 

the pyrolysis of ethylene at 600 °C in an argon atmosphere 

for 7 min. Self-organized nanodroplets acted as catalysts 

for the growth of multi-walled CNT arrays. 

On top of the layer of nanotubes, contact pads made of 

aluminum were deposited by thermal vacuum deposition. 

Since the technological process requires high accuracy and 

purity of the components, scanning electron microscopy 

(SEM) of the samples was carried out, and their elemental 

composition was studied using energy dispersive X-ray spec-

troscopy (EDX). The study was carried out on a Tescan Mira 

electron microscope with an installed spectrometer module. 
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Parameters such as deposition rate and substrate 

temperature were adjusted to control the structure and 

properties of the CNT thin film. SEM imaging and EDX 

analysis aided in evaluating the film's structural integ-

rity and purity. 

Spectral analysis was conducted using SEM and EDX to 

assess the purity of the samples and identify the distribu-

tion of elements within the CNT layer. The studies were car-

ried out in the Oxford Instruments AZtec system. Prelimi-

nary preparation of the samples was not required, since 

they already met the requirements: a flat and well-polished 

coating, no contamination. 

Current-voltage characteristics were measured to eval-

uate the electrical behavior of the carbon layer over time. 

Stability assessments were conducted to examine the re-

sistance to mechanical and environmental factors. 

Various post-treatment techniques such as heat treat-

ment, laser irradiation, and chemical functionalization 

were explored to modify the structure and properties of the 

CNT thin film. 

2.2. CNT-Epoxy: fabrication, electrical properties, 

SEM 

Obtaining a mixture of CNTs and epoxy resin consists of 

several stages, each of which plays an important role in the 

final result. To begin with, it is necessary to carry out cal-

culations of the required concentrations of substances to 

obtain the required level of conductivity. Depending on the 

manufacturer of both the CNT and epoxy resin, the ratios of 

the substances may vary. In our case, the concentration of 

single-walled CNTs in the mixture was ~0.3% of the total 

mass, which made it possible to achieve currents of the or-

der of 150–800 μA at drain-source voltages from 2 to 12 V. 

Theoretical data and the results of other works indicate cur-

rents of ~120 μA at a voltage of 12 V [29]. In general, the 

calculations and experimentally obtained data agree with 

each other within certain error margins, which will be dis-

cussed in more detail below. 

To reduce the concentration of single-walled CNTs 

(SWCNTs), the masterbatch was diluted with an epoxy 

resin like the masterbatch base by shear mixing. For better 

dispersion, the viscosity of the mixture was lowered with 

acetone, which was subsequently removed during the de-

gassing step. For degassing, the mixture was placed in a 

low-pressure chamber for a period of 30–60 min. Since the 

epoxy used was a two-component epoxy, the hardener was 

added at the last step. CNT masterbatch was mixed with 

epoxy by shear mixing for the desired 0.3 wt.% of CNTs at 

temperature of 45 °C and relative humidity of 30%. 

The process of preparing the mixture before applying it 

to the substrate consisted of several stages. Three different 

mixing steps were utilized with varying speeds as demon-

strated in Table 1. Low vacuum of 0.1 mbar was applied for 

15 min in step 2 and step 3 to reduce air bubbles entrapment 

in the mixture. The masterbatch, epoxy, and hardener mix-

ture were isotropic and homogeneous, and they will be 

further referred to as “CNT mixture” [30]. In step 4, the 

CNT mixture was mixed with acetone at low speed to obtain 

the final mixture ready for spin coating. The obtained mix-

ture was spin coated on the substrate at varying high rpm 

speed (2000–5000 rpm) and subsequently degassed for 30–

60 min to remove the acetone.  

The mixture obtained by this method is ready for appli-

cation to the substrate by spin coating or pressing methods. 

Three methods were employed for producing CNT-

epoxy thin films: pressing, spreading, and drop casting. 

Each method offered distinct advantages in terms of sim-

plicity, uniformity, and film thickness control.  

Scanning electron microscopy was utilized to capture 

surface images of the CNT-epoxy mixture and thin-film 

structures. The images were analyzed to assess dispersion 

uniformity and structural characteristics. 

The active layer of the transistor was obtained using the 

drop casting method. The method made it possible to obtain 

the required conductivity layer in the channel in the sim-

plest way. Glass coated with indium tin oxide (ITO) was 

used as the substrate material. As a gate dielectric, an AlOX 

solution was applied on a centrifuge, followed by heating in 

an oven (60 minutes). The contact pads were obtained by 

thermal spraying of aluminum in a vacuum. 

The electrical properties of the transistors were charac-

terized through current-voltage measurements. Mobility 

calculations were performed using established formulas, 

and switching frequency was determined based on the ob-

tained electrical parameters. 

The methods outlined above provide a comprehensive 

approach to the production and characterization of CNT 

thin films. These techniques offer flexibility in controlling 

film structure and properties, with potential applications in 

various electronic devices and sensors. Further research is 

warranted to optimize production processes and explore 

additional applications of CNT-epoxy mixtures. 

3. CNT thin films 

Obtaining a uniform layer of carbon nanotubes on large sur-

faces is a difficult task. By solving this problem, you can get 

a lot of scalable functional devices, for example, scanning 

probes and sensors, field emitters and nanoelectronics ele-

ments [16, 37].  

Table 1 Steps for mixing masterbatch with epoxy. 

Materials Step 1 Step 2 

Masterbatch + 

Epoxy 

Low speed heating 

(45  С, 20 min) 

High speed heating 

(45  С, 60 min) 

15 min  

vacuum 

Masterbatch + 

Epoxy + Hard-

ener 

Step 3 

Low speed 
Without heating 

(20 min) 

15 min 

vacuum 

CNT mixture + 

Acetone 

Step 4 

Low speed 

Without heating 
(20 min) 

Spin coating on sub-

strate 

30–60 

min 
vacuum 
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Significant effort is required to create useful structures in 

order to deposit nanotubes in a controlled manner without ad-

ditional manipulation or assembly after they have been depos-

ited. A carbon layer over a silicon substrate can be obtained by 

synthesizing CNTs on its surface [2, 38]. The morphology of 

the carbon layer is shown in Figure 1. The SEM method can be 

used to evaluate surface morphology such as roughness, dis-

persion uniformity of nanomaterials. Simple sample prepara-

tion and simple image understanding make SEM the most 

common electron microscopy method for this purpose. 

It can be seen from the images obtained that CNTs have 

a high curvature and form coils; however, their structure is 

not disturbed, which indicates a high-quality technology for 

their deposition. This is largely due to the choice of silicon 

substrate. It is known that a smooth silicon substrate makes 

it possible to obtain a high-quality CNT layer; moreover, 

silicon provides a good contrast in SEM observations [39–

40]. When thin CNT films are deposited on a substrate, 

their structure can be controlled using various process pa-

rameters. One of these parameters is the deposition rate, 

which can affect the structure and properties of the film. A 

high sputtering rate can lead to the formation of shorter 

and more disordered CNTs, while a lower sputtering rate 

can promote the formation of longer and more ordered 

structures. Another important parameter is the tempera-

ture of the substrate during the spraying process. High tem-

perature can promote more efficient growth and orienta-

tion of CNTs on the substrate. However, too high a temper-

ature can cause defects in the film structure and even de-

struction of CNTs. It is also possible to use various film 

post-treatment techniques such as heat treatment, laser ir-

radiation, or chemical functionalization to change the 

structure and properties of the CNT thin film. 

Let us pay attention to the spectral analysis of chemical 

elements (Figure 2). Basically, the scanning electron mi-

croscopy supplied with the EDX is used to qualitatively and 

quantitatively analyze the elements present in a selected 

area of the SEM image to evaluate the content of metals and 

impurities in CNTs. 

 
Figure 1 SEM image of CNTs grown on a substrate. 

Using the capabilities of SEM, it is possible to perform fo-

cused electron beam irradiation, visualization of secondary 

or backscattered electrons, and energy analysis of X-rays.  

The data obtained show that the samples have a high 

degree of purity, i.e., only the carbon layer is involved in 

the conduction mechanism. Also, carbon, having a minimal 

effect on the X-ray intensity during microanalysis, made it 

possible to dispense with applying a thin conductive layer 

on top of the samples. 

From the spectral analysis shown in Figure 3, it can be 

seen that silicon occupies the bulk of the volume. Carbon, 

which has a relatively low concentration, gives a high de-

gree of conductivity, which indicates its high structuring, 

which is typical for CNTs. 

 
Figure 2 An image obtained by EDX showing the distribution of 

elements on the surface of a sample. The image was obtained by 

scanning the surface of a silicon wafer with MWCNTs. 

 
Figure 3 The elemental surface image obtained by chemical analy-

sis shows the distribution of each element on the sample. 
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The results of chemical analysis show that silicon occu-

pies the largest volume on the substrate. This is due to the 

fact that during chemical analysis, radiation penetrates into 

the sample under study to a depth much greater than the 

thickness of the carbon layer. 

Current-voltage characteristics expectedly showed that 

the carbon layer exhibits stable electrical behavior at vari-

ous drain-source voltages, the repeatability of the data is 

confirmed by the measurements after 2 months, which in-

dicates mechanical and environmental resistance and cor-

relates with the studies of other groups [41–42]. Such be-

havior is beneficial when the fabricated devices are used, 

for example, in sensors or low-power solutions [43]. The 

stability advantage of CNTs over organic polymers is also 

worth noting. For example, polyanilines tend to oxidize and 

degrade over time, and can also lose sensitivity after sev-

eral working iterations, which was proven in our previous 

studies, although the synthesis of organics is much simpler. 

As can be seen, the production of thin films by vacuum 

deposition has a significant advantage in uniformity, pu-

rity, and also in the flexibility of controlling the structure 

of the CNT layer. However, this method is expensive and 

requires much more sophisticated equipment compared to 

the epoxy mixture method. This can be decisive in applica-

tions where high purity is not required and low cost is im-

portant at high production volumes. 

4. CNT-Epoxy mixture 

CNTs, depending on the chirality and quality of the produc-

tion process, have a wide range of electrical conductivities, 

from semiconductor to metallic. High metallic conductivity 

is not always necessary when creating electronic compo-

nents. In particular, for transistors, the conductivity level 

of semiconductors is optimal, the adequate degree of con-

ductivity of which should correspond, for example, to the 

specific electrical conductivity of silicon, 4.35 10–4 S/m. The 

separation of CNTs according to their conductivity is a com-

plex scientific and technical problem. Therefore, today it is 

easier to achieve semiconductor conductivity based on mix-

tures of CNTs with semiconducting or insulating materials, 

which make it easy to vary the effective conductivity of the 

mixture by changing the concentration of CNTs in it. 

As a rule, CNTs in epoxy mixtures are used to create com-

posite materials, and their mechanical properties are first 

studied [28]. However, the use of epoxy resin with CNT mas-

terbatch allows to find potentially new areas of application 

for these mixtures. Mixtures of CNTs and epoxy resins have 

a controlled level of conductivity, which depends mainly on 

the concentrations of CNTs in the mixture. This mixture, ac-

cording to physical properties, is also suitable for the synthe-

sis of thin-film structures, although it imposes certain re-

strictions on the process of their preparation. The combina-

tion of these facts makes it possible to use CNTs based on 

epoxy mixtures to create thin-film electronic components. 

Methods for producing thin films from epoxy mixtures dif-

fer from standard methods such as vacuum deposition or 

growing a carbon forest. Due to the fact that the mixture of 

CNTs and epoxy resin has a phase close to liquid, it is more 

convenient to use simpler and cheaper methods for producing 

thin films. The most successful methods are described below. 

A drop of the mixture is applied to the surface, usually 

with a syringe. The droplet size varies depending on the 

size of the gate and the methods of its further distribution. 

• Pressing. A drop applied to the surface is pressed 

evenly and tightly with a flat plate, as a result of which the 

mixture is distributed over the entire surface area (Figure 

4a). After lifting the pressure plate, some displacement of 

the mixture is possible; however, as experiments have 

shown, this does not affect the electrical properties since 

the conductive layer remains unchanged. 

 
Figure 4 Mixture application methods: pressing method (a), spreading method (b), drop casting method (c). 

https://doi.org/10.15826/chimtech.2024.11.2.05
https://doi.org/10.15826/chimtech.2024.11.2.05


Chimica Techno Acta 2024, vol. 11(2), No. 202411205 ARTICLE 

 6 of 10 DOI: 10.15826/chimtech.2024.11.2.05

   

• Spreading method. The applied droplet is spread 

over the surface using a flat plate with a fixed controlled 

pressure, which ensures an even distribution of the mixture 

over the substrate. This method, although simple, produces 

a film thickness of about 10 µm with desirable electrical and 

mechanical stability. Unlike pressing, this method allows 

removing the pressing plate without the formation of con-

centrated “peaks” of the mixture as a result of its adhesion, 

due to which the entire area of the applied mixture has an 

almost uniform structure. 

• Drop casting method. The drop method with a drying 

unit at high temperature (drop casting) (Figure 4c). A small 

drop (1–3 mm in diameter) is applied to the substrate in a 

solution with acetone, which allows increasing the fluidity 

of the solution at the time of application. Next, the sample 

is placed in an oven at sufficient temperature to slowly 

evaporate the acetone, where due to the evaporation of the 

solution, the film thickness reaches up to ten micrometers. 

Regardless of the production methods, the films had 

long-term mechanical and electrical stability, since the 

main task was the formation of a conductive channel be-

tween the contact pads. However, drop casting method 

turned out to be the simplest method in terms of repeata-

bility of results and ease of use. In this way, several samples 

of thin-film transistors were obtained. The channel width 

is ≈50 µm with a length of 5 mm, and the film thickness is 

~10 µm, depending on the deposition method. 

4.1. SEM 

Several surface images of CNT-Epoxy were captured using 

a scanning electron microscope (Figure 5). The mixture was 

applied using the drop-casting method. The images depict 

areas with varying dispersion of the mixture: on the left – 

non-uniform dispersion, on the right – uniform dispersion. 

This discrepancy is attributed to the dispersion mecha-

nisms of carbon nanotubes in the epoxy mixture, leading to 

the formation of agglomerations with elevated and reduced 

concentrations. Compared with the films obtained via the 

classical growth of CNT on a substrate, as illustrated in the 

previous images, the mixtures provide a structure that is 

not as clean and uniform. However, the latter thin-film 

structures were obtained by a significantly faster and sim-

pler method. 

The methods described above are laboratory methods 

with certain assumptions. It is obvious that for a full pro-

duction cycle it is necessary to carry out work towards ob-

taining more homogeneous mixtures, as well as improving 

methods for applying films. However, the results already 

obtained allow us to say that this direction has the scalabil-

ity potential. 

5. CNT-Epoxy transistor 

A thin film transistor based on CNT-Epoxy was obtained. 

Glass coated with ITO was used as the substrate material. 

As a gate dielectric, an AlOX solution was applied with a 

thickness of 100 nm. The contact pads were made of alumi-

num. The structure of the resulting transistor is shown in 

Figure 6. 

The current-voltage characteristics of the obtained 

transistors are shown in Figure 7. The measurement of 

their electrical properties showed that they have a high 

degree of conductivity of the order of hundreds of micro-

amperes, which agrees with the studies from other 

groups [44–45]. 

The degree of conductivity can be adjusted by increasing 

or decreasing the concentration of epoxy in the mixture. As 

mentioned above, the concentration of CNTs in the mixture 

was ≈0.3% of the total mass. The required concentrations 

of the components can be theoretically calculated in ad-

vance; however, to do this, it is necessary to take into ac-

count the electrical properties of the EM from a specific 

manufacturer and batch and make the required adjust-

ments to the calculations. These transistors based on thin 

films are in demand in sensors or smart devices, in which 

energy efficiency and overall dimensions with flexible 

properties are important [46–47]. 

Mobility calculations based on current-voltage charac-

teristics were also carried out. The calculation was made 

according to Equation 1,  

𝜇 =
𝐼DS

𝑊
𝐿 ∙ 𝐶 ∙ (𝑉G − 𝑉th) ∙ 𝑉DS

, (1) 

where IDS is the drain-source current, W is the shutter 

width, L is the shutter length, C is the film capacity, VG is 

the gate voltage, Vth is the threshold voltage, VDS is the 

drain-source voltage. 

 
Figure 5 SEM image of CNT-Epoxy mixture: zone of non-uniform 

dispersion (a), zone of uniform dispersion (b). 

 
Figure 6 Structure of a thin film transistor based on an epoxy mix-

ture of CNTs. 
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Figure 7 Output (a) and transfer (b) characteristics of an epoxy 

blended CNT transistor. 

The calculated mobility μ was 28.87 cm2/V∙s, at 

VDS = 12 V, C = 8.910–9 F/cm2, L = 5010–4 cm, W = 210–1 cm, 

VDS = 12V, VG = 12 V, Vth = 6 V, IDS = 74010–6 A. 

The calculation of the switching frequency of the tran-

sistor (Equation 2) showed a frequency of 2.2 MHz with the 

same input data. High frequencies are due to high conduc-

tivity and mobility. 

𝑓 =
1

2𝜋

𝜇𝑉DS
𝐿2

 (2) 

It should be noted that different samples showed differ-

ent results due to several factors. First, in addition to the 

concentration of CNTs, the structure of the mixture also 

plays an important role in the conduction mechanism. It 

was experimentally found that a high degree of dispersion 

homogeneity gives a higher conductivity value. A closer ar-

rangement of CNT agglomerates, as well as their uni-

formity, leads to lower electrical resistivity values. Sec-

ondly, the quality of production and the method of pro-

cessing masterbatches, as well as their dilution, affect the 

final electrical resistivity of the produced materials. It was 

also found that in combination with efficient industrial dis-

persion (three-roll mill) and chemical compounds in the 

production of the masterbatch, the degree of dispersion of 

the tubes in the precursor is much higher, which allows for 

better final dispersion of the nanotubes as well as a smaller 

agglomerate size. Due to their geometric characteristics, 

denser networks form single-walled CNTs, the degree of 

conductivity of which exceeds multi-walled CNTs by several 

orders of magnitude. Thus, particle geometry, degree of dis-

persion, distances between particles and agglomeration in 

CNT epoxy mixtures directly affect the conductivity; there-

fore, in order to obtain stable and uniform thin films in 

which high accuracy in currents is required, it is necessary 

to carefully monitor the technological process or expect sig-

nificant percentage of defective devices. 

Features of CNT dispersion and film deposition cause 

some differences in electrical properties between samples. 

In addition to the concentration of CNTs, the structure of 

the mixture plays a significant role in the conduction mech-

anism. An important role is played by the quality of produc-

tion and the method of processing masterbatches and their 

dilution. 

Nevertheless, the results obtained show a high degree of 

film conductivity even after a long time (3 months), which 

indicates the stability of the composition and the absence of 

film degradation. Based on experience of using CNTs in 

metal matrix composites, one can expect stability of opera-

tion up to high temperatures of several hundred degrees 

Celsius, taking into account the complex behavior of the 

temperature coefficient of electrical resistance. 

There are several ways to control the electrical proper-

ties of CNTs in epoxy resin. One of them is the addition of 

functional groups to the CNT surface, which can change 

their surface properties and interaction with the epoxy 

resin. Another way is to change the concentration of CNTs 

in the epoxy resin. It is also possible to use additional com-

ponents such as metal nanoparticles or polymer additives 

to control the electrical properties of the CNTs in the epoxy 

resin. However, each of these methods has its limitations 

and requires further research. For example, in some papers 

explore various ways to functionalize CNTs to improve dis-

persion and interfacial interaction in epoxy composites 

[37]. Also, some groups investigate the effect of CNT con-

centration on electrical conductivity and mechanical prop-

erties of CNT-epoxy composites [48]. 

It is worth noting that carbon nanotubes (CNTs) are uti-

lized in certain methods for detecting hydrocarbons, acting 

as sensors [49–51]. CNTs possess a large surface area and 

unique electronic properties that enable them to detect small 

quantities of hydrocarbons in the surrounding environment. 

Several approaches exist for employing CNTs as hydrocarbon 

sensors. One such approach involves using CNTs as elements 

in field-effect transistors. CNTs are incorporated into the 

transistor material and utilized for the detection of hydro-

carbons. Another approach involves using CNTs as a material 

for electrochemical sensors. In this case, CNTs are coated 

with a polymer layer exhibiting high selectivity towards hy-

drocarbons, allowing the detection of even low concentra-

tions in the surrounding environment. Thus, there is poten-

tial for the application of CNT-epoxy mixtures as hydrocar-

bon sensors; however, this necessitates further research. 

https://doi.org/10.15826/chimtech.2024.11.2.05
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6. Conclusion 

The resulting thin-film structures comprising carbon nano-

tubes (CNTs) and epoxy mixtures exhibit promise for appli-

cations in film electronics, albeit with the caveat of neces-

sitating enhanced fabrication techniques. The intricacies of 

CNT dissolution within epoxy resins and the methods em-

ployed for film deposition do not consistently yield repro-

ducible outcomes. These processes may give rise to clusters 

with varying concentrations of CNTs, thereby engendering 

electrical disparities across different samples, typically 

within a margin of 5–7% from the calculated mobility of 

28.87 cm²/V∙s. The transistor switching frequency, averag-

ing 2.2 MHz across all samples with a spread of values fall-

ing within the 10–15% range, correlates with the diver-

gence in cluster structures among samples. Despite these 

variations, all samples exhibited stable electrical properties 

even after prolonged exposure to ambient conditions, man-

ifesting no signs of degradation or detrimental effects on 

thin-film characteristics. 
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