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Abstract  

Coumarin derivatives were synthesized herein from 3-acetyl coumarin and 
4-(pyrimidin-2-yldiazenyl) antipyrine, leading to the azo chalcone interme-
diate compound. The final spiro-heterocyclic coumarins were produced 

through the cyclization of the azo-chalcone with thiourea, guanidine hydro-
chloride, benzene-1,2-diamine, 2-aminophenol, and hydroxylamine hydro-
chloride, respectively. The obtained target compounds were purified by col-

umn chromatography and characterized by FT-IR, 1H NMR, 13C-NMR and 
elemental analysis. The antibacterial activity of the synthesized compounds 

was evaluated in vitro against Gram-negative and Gram-positive bacteria. 
One of the compounds showed significant antibacterial activity. Further-
more, the docking study of this compound with DNA gyrase for E. coli and S. 

aureus bacterial strains was investigated, which revealed vital interactions 
and binding. 
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Key findings 
● Five spirocyclic coumarin derivatives were successfully synthesized and characterized by spectroscopic techniques. 

● Compound (3a) among others exhibited the best activity against two types of Gram-negative and Gram-positive bacteria. 

● The molecular docking study of compound (3a) and binding conformations with DNA gyrase for E. coli and S. aureus revealed 

that it was the most affected target. 

© 2024, the Authors. This article is published in open access under the terms and conditions of  

     the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
 

1. Introduction 

Coumarins (α-benzopyrones, 2H-chromen-2-ones) are a 

large family of naturally occurring compounds that exhibit 

numerous biological and medicinal activities [1, 2], such as 

antioxidant, anticancer, anticoagulant, and anti-inflamma-

tory ones [3]. Also, they are used as additives in food, cos-

metics, and dyes [4]. Their pharmacological properties de-

pend on the substitution pattern [5].  

Bacterial infections are widespread [6]. According to 

statistics, it is expected that 10 million individuals will die 

annually around the world unless the medical interventions 

are improved [7]. The reason behind this is the increase in 

multidrug resistance of pathogenic microorganisms [8]. 

Coumarins and their derivatives are extensively used as 

precursors to produce effective antibacterial agents. Many 

such agents have been developed by adding new groups to 

improve the interaction with DNA gyrase as a drug target. 

Several studies have proven that antibiotics that contain 

coumarin in their structure, such as novobiocin and cloro-

biocin, are antimicrobials via DNA gyrase inhibition. DNA 

gyrase (topoisomerases II) is an enzyme that is mainly re-

sponsible for bacterial chromosome replication. It can in-

troduce a double-stranded break in DNA and is believed to 

have a central role in reducing topological strain in an ATP-

dependent manner [9]. Bacterial growth can be prevented 

by DNA gyrase inhibitors through two particular mecha-

nisms: directly inhibiting DNA gyrase, called “gyrase poi-

soning”, or indirectly, by inhibiting gyrase ATPase activity 

[10]. As a result, DNA gyrase has become a common target 

for various medicinal products, particularly for bacterial 

strains such as Escherichia coli [11]. Spiro compounds are 
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essential substances due to their balance between confor-

mational restriction and flexibility. Recent progress in the 

isolation and characterization of new spiro building blocks 

from synthetic or natural products has facilitated their in-

volvement in more molecules with pharmaceutical applica-

tions, such as anti-Alzheimer's, anticancer, antimicrobial 

agents [12]. They are free from permeability and absorption 

issues compared to aromatic heterocycles, making them at-

tractive and probable targets for new drug discovery [13]. An-

tibacterial I and II [14, 15], and antifungal III [16], containing 

a spirocyclic ring, are prominent examples (Figure 1).  

Therefore, in this study, some spiro-heterocyclic couma-

rin derivatives were synthesized (Scheme 1). Spectroscopic 

techniques and elemental analysis were used to character-

ized all the newly prepared compounds. In addition, the in 

vitro assessment of their antibacterial activities was evalu-

ated. The molecular docking simulation of compound (3a) 

with DNA gyrase enzyme in E. coli and S. aureus was also 

studied. 

2. Materials and methods  

2.1. Materials 

All reagents and solvents used were purchased from Sigma-

Aldrich and BDH. The purity of the synthesized compounds 

was regularly checked on TLC plates coated with silica gel 

60F254 aluminum sheets (TLC, Darmstadt, Germany) and 

purified using column chromatography in an ethyl acetate-

hexane and dichloromethane system, 1H and 13C NMR spec-

tra were recorded with a Bruker Bio Spin Gmb (400 MHz 

for 1H and 100 MHz for 13C) in DMSO-d6 with Me4Si as the 

internal standard. Infrared spectra were recorded on 

Bruker Alpha (Platinum ATR, Germany). Elemental anal-

yses were performed with Elementar Analysensysteme 

GmbH, CHNS Model, S. No. 11086109. Melting points were 

determined using a Stuart SMP3 apparatus (Staffordshire, 

UK).  The NMR, FT-IR spectra and elemental analysis data 

of all the compounds are shown in the supporting infor-

mation (Figures S3–S3e). 

2.2. Preparation of intermediate azo-chalcone  

2.2.1. 3-(2-(1,5-dimethyl-2-phenyl-4-(pyrimidin-2-yldi-

azenyl) -1,2-dihydro-3H-pyrazol-3-ylidene) ace-

tyl)-2H-chromen -2-one (3) 

A solution of 3-acetyl-2H-chromen-2-one 1 (6 g, 3.2 mmol) 

and 4-(pyrimidin-2-yldiazenyl)-antipyrine 2 (0.94 g, 

3.2 mmol) in 15 mL absolute ethanol was stirred. Then, 

0.5 mL of piperidine was added with rapid stirring. The 

mixture was refluxed for 8 h. The progress of the reaction 

was monitored by TLC. After the completion of the reaction, 

it was cooled, and the precipitate was filtered off and re-

crystallized from ethanol. Orange powder, m.p: 258–

260 °С, Rf = 0.78, IR spectrum, ν, cm–1: 1731 (C=Olactone), 

1672 (C=Ocarbonyl), 1595 (N=N). 1H NMR spectrum 

(400 MHz, DMSO-d6), δ, ppm; 8.57 (2H, d, J = 12.0 Hz, py-

rimidine), 8.39 (s, 1H, coumarin), 8.08–8.01 (m, 1H, pyrim-

idine), 7.84–7.76 (m, 1H, Ar H), 7.68–7.61 (m, 1H, Ar H), 

7.47–7.37 (m, 3H, Ar H), 7.36–7.19 (m, 1H, Ar H), 6.67 (s, 

1H, CH=), 2.78 (s, 3H, CH3), 2.13 (s, 3H, CH3). 13С NMR spec-

trum (100 MHz, DMSO-d6), δ, ppm; 184.0 (C=Ocarbonyl); 

163.6 (Cbeta); 161.0 (C=Olactone); 152.3 (CPyrimidine); 147.0   

(Colefinic); 143.4 (CPyrimidine); 143.1 (Colefinic);140.2 (CAr); 136.0 

(CAr); 134.0 (Colefinic); 131.2 (CAr); 130.2 (CAr); 129.5 (CAr); 

127.7 (CAr); 127.3 (CAr); 126.1 (CAr); 123.5 (CAr); 120.6 (CAr); 

117.5 (CPyrimidine); 114.4 (Colefinic); 114.3 (Calpha); 32.7 (Cmethyl); 

10.6 (Cmethyl). Found, %: С 67.32; H 4.38; N 8.26. 

C26H20N6O3. Calculated, %: C 67.23; H 4.34; N 8.23. 

2.3. Preparation of target spirocyclic pyrimidines 

(3a, 3b) 

General method. To a solution of azo-chalcone 3 (1.5 mmol), 

thiourea, and/or guanidine (1.5 mmol) in absolute ethanol 

(15 mL), a solution of potassium hydroxide (0.2 g) in water 

(1 mL) was added; the reaction mixture was refluxed for 

7 h. The progress of the reaction was monitored by TLC. Af-

ter the completion of the reaction, the alcohol was evapo-

rated under vacuum till dryness, and the residue was acid-

ified with diluted. HCl. The solid formed was filtered, 

washed with water, dried under vacuum, and purified 

through column chromatography using hexane, ethyl ace-

tate, and dichloromethane (3.5:1:0.5 v/v/v) as eluent to ob-

tain the pure target compounds. 

2.3.1. 3-(2,3-dimethyl-1-phenyl-4-(pyrimidin-2-yldi-

azenyl)-7-thioxo-1,2,6,8-tetraazaspiro [4.5] deca-

3,9-dien-9-yl)-2H-chromen-2-one (3a)   

Light brawn powder, m.p: 290-292 °С, Rf=0.68, IR spec-

trum, ν, cm–1: 1704 (C=O), 1662(C=Sthione), 1624 (N=Nazo). 
1H NMR spectrum (400 MHz, DMSO-d6), δ, ppm; 10.01 (s, 

1H, NH), 8.64–8.61 (2H, d, J = 10.0 Hz, pyrimidine),          

8.35 (s, 1H, coumarin), 8.11–8.08 (m, 1H, pyrimidine), 

7.82–7.77 (m, 2H, Ar H), 7.70–7.65 (m, 3H, Ar H), 7.37 (2H, 

d, J = 2.5 Hz, Ar H), 5.01 (s, 1H, CH=), 3.09 (s, 3H, CH3), 

1.80 (s, 3H, CH3). 13С NMR spectrum (100 MHz, DMSO-d6), 

δ, ppm; 183.2 (C=Sthione); 162.4 (C=Olactone); 160.5             

(CPyrimidine); 156.8 (CAr); 152.2 (CAr); 151.8 (CAr); 150.4 (Cole-

finic); 144.9 (CPyrimidine); 138.0 (Colefinic); 134.5 (CAr); 132.1 

(CAr); 131.2 (Colefinic); 128.7 (CAr); 127.4 (Colefinic); 124.4(CAr);    

121.0 (Colefinic); 120.1 (CAr); 118.3 (CAr); 117.4 (CPyrimidine); 114.6 

(CAr); 111.2 (Cspiro); 108.6 (Colefinic); 46.0 (Cmethyl);    12.8 (Cme-

thyl). Found, %: С 62.12; H 4.28; N 21.47; S, 6.19. C27H22N8O2S. 

Calculated, %: C 62.06; H 4.24; N 21.44; S, 6.13. 

   
Figure 1 Examples of some active spirocyclic compounds.

.
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Scheme 1 Synthesis of spiro heterocycles (3 and 3a-e) Reagents and conditions: (i) Abs. EtOH, / pipridine, stirring, reflux 8 h, yield; 

78%. (ii) Abs. EtOH /thiourea (0.2 g) of KOH, reflux 7 h, yield; 71%. (iii) Abs. EtOH /guanidine hydrochloride, (0.2 g) of KOH, reflux 7 h, 
yield :74%. (iv) Abs. EtOH / benzene-1,2-diamine, Gla.CH3CO2H, reflux 10 h, yield; 74%. (v) Abs. EtOH / 2-aminophenol, Gla.CH3CO2H, 

reflux 10 h, yield; 70%. (vi) Abs. EtOH /hydroxylamine hydrochloride, (0.2 g) of KOH, reflux 7 h, yield ;72%.  

 

2.3.2. 3-(7-amino-2,3-dimethyl-1-phenyl-4-(pyrimidin-

2-yldiazenyl)-1,2,6,8-tetraazaspiro [4.5] deca-

3,6,9-trien-9-yl)-2H-chromen-2-one(3b)  

Brownish powder, m.p: 272-274 °С, Rf = 0.82, IR spect 

rum, ν, cm–1: 3551, 3483 (NH2), 3190 (NH), 1697     

(C=Olactone), 1653 (C=Nimine), 1606 (N=Nazo). 1H NMR spec-

trum (400 MHz, DMSO- d6), δ, ppm; 10.12 (s, 1H, NH2), 

8.68 (2H, d, J = 12.6 Hz, pyrimidine), 8.49 (s, 1H, couma-

rin), 8.19–8.07 (m, 2H, Ar H), 7.68–7.57 (m, 2H, Ar H), 

7.39–7.15 (m, 1H, pyrimidine), 6.98–6.74 (m, 2H, Ar H), 

6.63 (s, 1H, C=CH), 5.61 (s, 2H, NH2), 3.14 (s, 3H, CH3), 

2.20 (s, 3H, CH3). 13С NMR spectrum (100 MHz, DMSO-

d6), δ, ppm; 161.7 (C=Olactone); 160.5 (Camine);160.4          

(CPyrimidine); 158.0 (C=Nimine); 154.69(CAr); 152.1 (CAr); 

150.3 (Colefinic); 142.9 (Colefinic); 136.1 (CAr); 135.1 (CAr); 

133.0 (CPyrimidine); 129.5 (Colefinic); 129.2 (CAr); 128.4 (CAr); 

127.0 (CAr); 124.2 (Colefinic); 121.5 (Colefinic); 119.3 (CAr); 

116.8 (CAr); 116.8 (CPyrimidine);113.2 (Colefinic); 112.1 (Cspiro); 

31.2 (Cmethyl); 10.2 (Cmethyl). Found, %: С 64.21; H 4.62; N 

24.97. C27H23N9O2. Calculated, %: C 64.15; H 4.59; N 24.94. 
 

2.4. Preparation of target spirocyclic diazepine 

(3c) and oxazepine (3d) 

General method. Azo-chalcone 3 (1.5 mmol) was added to a 

solution of benzene-1,2-diamine and/or 2-aminophenol 

(1.5 mmol) in absolute ethanol (15 mL), and glacial acetic 

acid (0.5 mL) was added. The reaction mixture was refluxed 

with stirring for 10 h. The progress of the reaction was 

monitored by TLC. After the completion of the reaction, the 

reaction mixture was poured on crushed ice. The solid 

formed was filtered, washed with water, dried under vac-

uum, and purified through column chromatography using 

hexane, ethyl acetate, and dichloromethane (3:1:1 v/v/v) as 

eluent to obtain the pure target compounds. 

2.4.1. 3-(1',5'-dimethyl-2'-phenyl-4'-(pyrimidin-2-yldi-

azenyl)-1,1',2',5-tetrahydro spiro [benzo [b] [1,4] 

diazepine-2,3'-pyrazol]-4-yl)-2H-chro men-2-one 

(3c) 

Light orange powder, m.p: 282–284 °С, Rf = 0.77, IR spec-

trum, ν, cm–1:3204(NH), 1706 (C=O lactone), 1652 (N=N 

azo). 1H NMR spectrum (400 MHz, DMSO-d6), δ, ppm; 

9.69 (s, 2H, NH), 8.74–8.63 (2H, d, J = 11.8 Hz, pyrimi-

dine), 8.39 (s, 1H, coumarin), 8.19–8.12 (m, 1H, Pyrimi-

dine), 8.08–8.02 (m, 1H, Ar H), 7.93 (2H, d, J = 8.2 Hz, Ar 

H), 7.78–7.72 (m, 1H, Ar H), 7.65–7.62 (m, 1H, Ar H), 7.60–

7.53 (m, 1H, Ar H), 7.49–7.39 (m, 2H, Ar H), 7.34–7.24 (m, 

2H, Ar H), 6.47 (s, 1H, CH=), 3.21 (s, 3H,CH3), 2.38 (s, 3H, 

CH3). 13С NMR spectrum (100 MHz, DMSO-d6), δ, ppm; 

160.5 (C=O lactone) ;154.9 (C Pyrimidine); 150.4 (C Ar); 150.0 

(CAr); 148.6 (CAr); 147.8 (CAr); 143.2 (CPyrimidine); 140.7 

(CAr); 136.4 (CAr); 134.6 (CAr); 132.9 (CAr); 130.5 (Colefinic); 

129.6 (Colefinic); 129.4 (Colefinic); 127.2 (CAr); 125.8 (CAr); 

124.3 (CAr); 123.1 (CAr); 122.9 (CAr); 122.3 (Colefinic); 119.6 

(CAr); 118.7 (CAr); 116.9 (CPyrimidine); 116.0 (CAr); 113.2    

(Colefinic); 109.9 (Colefinic); 106.5 (Cspiro); 48.1 (Cmethyl); 12.2 
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(Cmethyl). Found, %: С 69.36; H 4.72; N 20.26. C32H26N8O2. 

Calculated, %: C 69.30; H 4.73; N 20.20. 
 

2.4.2. 3-(1',5'-dimethyl-2'-phenyl-4'-(pyrimidin-2-yldi-

azenyl)-1',2'-dihydro-5H-spiro [benzo[b] [1,4] oxa-

zepine-2,3'-pyrazol]-4-yl)-2H-chromen-2-one(3d)  

Light orange powder, m.p: 286–288 °С, Rf = 0.71, IR spec-

trum, ν, cm–1: 3116 (NH), 1720 (C=Olactone), 1664           

(N=N azo). 1H NMR spectrum (400 MHz, DMSO-d6), δ, 

ppm; 10.03 (s, 1H, NH), 8.65 (2H, d, J = 8.5 Hz, pyrimi-

dine), 8.39 (s, 1H, coumarin), 8.19–8.12 (m, 1H, Pyrimi-

dine), 8.08–8.02 (m, 1H, Ar H), 7.95–7.91 (m, 1H, Ar H), 

7.74 (2H, d, J = 12.1 Hz, Ar H), 7.65–7.62 (m, 2H, Ar H), 

7.49–7.39 (m, 2H, Ar H), 7.34–7.24 (m, 2H, Ar H), 4.52 (s, 

1H, CH=), 3.12 (s, 3H,CH3), 2.20 (s, 3H,CH3). 13С NMR 

spectrum (100 MHz, DMSO-d6), δ, ppm; 160.6 (C=Olactone); 

155.0 (CPyrimidine) 150.5 (CAr); 150.1 (CAr); 148.7 (CPyrimidine); 

147.9 (Colefinic); 143.3 (Colefinic); 140.8 (CAr); 136.5 (CAr); 

134.7 (CAr); 133.0 (CAr); 130.6 (Colefinic); 129.7 (Colefinic); 

129.6 (CAr); 127.3 (CAr); 125.9 (CAr); 124.4 (Colefinic); 123.2 

(CAr); 123.0 (CAr); 122.4 (CAr); 119.7 (CAr); 118.8 (CAr); 

117.0 (CAr); 116.1 (CPyrimidine); 113.3 (CAr), 110.0 (Cspiro); 

106.6 (Colefinic); 48.1 (Cmethyl); 12.3 (Cmethyl). Found, %: С 

69.25; H 4.56; N 17.56. C32H25N7O3. Calculated, %: C 

69.18; H 4.54; N 17.59. 

2.5. Preparation of target spirocyclic isoxazole 3-

(7,8-dimethyl-6-phenyl-9-(pyrimidin-2-yldi-

aze nyl)-1-oxa-2,6,7-triaza spiro [4.4] nona-

2,8-dien-3-yl)-2H-chromen-2-one(3e) 

General method. A mixture of azo-chalcone 3 (0.7 g, 

1.5 mmol) and hydroxylamine hydrochloride (0.1 g, 

1.5 mmol) in 15 mL of ethanol and a solution of potassium 

hydroxide (0.2 g) in water (2 ml) were added to the reaction 

mixture and refluxed for 7 h. The progress of the reaction 

was monitored using TLC. After completion of the reaction, 

the reaction mixture was poured into crushed ice and neu-

tralized with dilute HCl. Finally, the solid formed was fil-

tered, washed with water, dried under vacuum, and puri-

fied through column chromatography using hexane, ethyl 

acetate, and dichloromethane (3.5:1:0.5 v/v/v) as eluent to 

obtain the pure target compounds. 

Light orange powder, m.p: 266–268 °С, Rf=0.79, IR 

spectrum, ν, cm–1: 3204(NH), 1733 (C=Olactone), 1662(N=N 

azo). 1H NMR (400 MHz, DMSO-d6), δ, ppm; 8.19 (2H, d, J = 

12.3 Hz, Pyrimidine), 7.98 (s, 1H, coumarin), 7.80–7.72 (m, 

1H, Pyrimidine), 7.55–7.47 (m, 2H, Ar H), 7.41–7.30 (m, 2H, 

Ar H), 7.05–6.97 (m, 2H, Ar H), 3.04 (d, 2H, J = 7.3 Hz, CH2), 

2.74 (s, 3H, CH3), 2.15 (s, 3H, CH3). 13С NMR spectrum (100 

MHz, DMSO-d6), δ, ppm; 160.5 (C=Olactone); 160.4 (C=Nimine) 

; 158.0 (CPyrimidine); 154.6 (CPyrimidine); 150.3 (CAr); 142.9 (Cole-

finic); 136.1 (Colefinic); 135.1 (CAr); 133.0 (CAr); 130.4 (CAr); 

129.5 (CAr); 128.4 (CAr); 127.0 (Colefinic); 121.5 (Colefinic); 119.3 

(CAr); 116.8 (CPyrimidine); 113.2 (CAr); 113.2 (CAr); 112.1 (CAr); 

108.8 (Cspiro); 44.9 (Cisoxazole); 24.9 (Cmethyl); 13.1 (Cmethyl). 

Found, %: С 65.19; H 4.45; N 20.48. C26H21N7O3. Calculated, 

%: C 65.13; H 4.41; N 20.45. 

2.6. Study of antibacterial activity 

All five synthesized spirocyclic coumarin derivatives were 

biologically evaluated against S. aureus (ATCC5923) and E. 

coli (ATCC25922), which were chosen for extended evalua-

tion of antibacterial properties of the studied compounds, 

with dimethyl sulfoxide (DMSO) and ceftriaxone 

(30μg/mL) as negative and positive controls. The agar-disc 

diffusion approach was used to assess the antibacterial ac-

tivities according to the Özer H. et al. method [17]. In sum-

mary, we dissolved 25 and 50 g/mL of each compound in 

DMSO. The diameter of bacterial colonies was measured, 

and the percentage of bacterial growth inhibition was de-

termined by the formula [18]: 

I (%) = (C – T)∙100/C, (1) 

where I (%) is the degree of inhibition of bacterial growth. 

C is the diameter of the bacterial growth in the standard; T 

is the diameter of the bacterial growth in the test. 

2.7. Molecular docking studies 

Molecular docking investigations were carried out using the 

AutoDock Vina 1.1.2 software for molecular docking simula-

tion studies. The 3D structure of DNA gyrase proteins was 

obtained from the RCSB Protein Data Bank: E. coli (PDB ID: 

1KZN) and S. aureus (PDB ID: 3g75). All water molecules 

and the ligand were eliminated prior to the docking calcu-

lations for compound 3a, and the 3D structures of the ligand 

and conformations were generated using the ChemAxon 

Marvin Sketch 5.3.735 program and saved in the mol2 for-

mat. Gaussian 09 software was used to optimize and mini-

mize the energy of compound 3a. Auto Dock Tools (ADT) 

1.5.6 was used to prepare the ligand and protein. The bind-

ing affinities of compound 3a to the DNA gyrase protein of 

E. coli (PDB ID: 1KZN) and S. aureus (PDB ID: 3g75) were 

simulated by mimicking the interactions between the pro-

tein and compound. Discovery Studio Visualizer (BIOVIA, 

Discovery Studio, v4.0.100.13345) was employed to analyze 

the interactions between the ligand and the targeted pro-

teins [19]. 

3. Results and Discussions 

Various compounds were used as nucleophilic reagents, 

such as thiourea, guanidine, benzene-1,2-diamine, 2-amino 

phenol and hydroxyl amine hydrochloride, and reacted with 

azo-chalcone [20] to form the heterocyclic compounds such 

as pyrimidine  [21], diazepine and oxazepine [22], and isox-

azole [23] (3a–e), respectively (Scheme 1). All the synthe-

sized compounds were studied by FT-IR, 1H NMR, 13C-NMR 

and elemental analysis. Some of the compounds exhibited 

significant antibacterial activity, however, compound 3a re-

vealed the highest activity against both S. aureus and E. coli 

bacteria as shown in Figure 2.
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Figure 2 Antibacterial activity of synthesized heterocyclic coumarin derivatives. 

Molecular docking results revealed that compound 3a 

shows binding modes with DNA gyrase that closely resem-

ble clorobiocin binding mode. Figure 3 (1A-1C) illustrates 

the formation of 3a ligand-protein complex in the ac-

tive site of E. coli DNA gyrase (ID: 1KZN) with ΔG binding en-

ergy value of –9.9 kcal/mol. The formed complex was stabi-

lized by hydrogen bonds (shown by green, dotted lines) 

with two amino acids ASN32 and GIY63. Different types of 

bonding interactions (like pi-alkyl, pi-Anion, and pi-Sigma, 

etc.) are shown by different colors of the dotted lines in Fig-

ure 3. As compared with the known antibiotic clorobiocin, 

the ligand-protein complex inside the active site of the E. 

coli DNA gyrase has ΔG binding energy value of -7.2 kcal/mol, 

see Figure 3 (2A–2C). 

On the other hand, Figure 4 (3A-3C) showed the for-

mation of compound 3a ligand-protein complex in the active 

site of S. aureus DNA gyrase (ID: 3g75) with ΔG binding energy 

value of -8.2 kcal/mol. 

 
Figure 3 The formed interactions between compound 3a (1A), and the clorobiocin (2A), with E. coli DNA gyrase (ID: 1KZN) in a 3D 

ribbon. Stick model for compound 3a (1B), and the clorobiocin (2B) show 3D interactions with specific amino acids residues of E. coli 

DNA gyrase (ID: 1KZN). Compound 3a (1C), and with clorobiocin (2C): shows 2D interactions with specific amino acid residues of E. 

coli DNA gyrase (ID: 1KZN). 
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Figure 4 The formed interactions between the compound 3a (3A), and the clorobiocin (4A), with the S. aureus DNA gyrase (ID: 3g75) 
in a 3D ribbon. Stick model for compound 3a (3B), and the clorobiocin (4B) show 3D interactions with specific amino acids residues of 

S. aureus DNA gyrase (ID: 3g75). Compound 3a (3C), with clorobiocin (4C): show 2D interactions with specific amino acids residues of 

S. aureus DNA gyrase (ID: 3g75). 

The ligand-protein complex was stabilized by hydrogen 

bonds (shown by green dotted lines) with three amino acids 

THR A:127, GLY A:62 and ARG A:61, interactions and differ-

ent, types of bonding, interactions (like pi-cation, amide-pi 

stacked, and pi-Sigma etc.). As compared with the known 

antibiotic clorobiocin, the ligand-protein complex inside 

the active site of the S. aureus DNA gyrase has ΔG binding energy 

of –6.8 kcal/mol (4A–4C). Compound 3a showed both main 

hydrogen bond and interactions with different groups such 

as pyrimidine, thiol group, and lactone of coumarin. Also, 

possible antibacterial effects may be attributed to further 

interactions with amino acid residues. According to these 

findings, the selected compound 3a has a better docking 

score of ΔG binding energy with bacterial strains compared to 

clorobiocin. The results provide a sufficient explanation 

and a convenient correlation between in vitro antibacte-

rial assay and the results of docking study. 

4. Limitations 

The synthesis of spiro- heterocyclic coumarin derivatives, 

which are important in various fields such as medicine, 

food industry, and organic chemistry, can present several 

limitations. The key challenges may be represented by 

harsh reaction conditions (acids and bases), low yield (long 

reaction time with low-moderate yield), catalyst requirements 

(large amount of catalyst and high cost) and environmental 

concerns (difficulty in disposal of organic reactants and sol-

vents). The aforementioned issues can be a limitation for the 

synthesis of diverse heterocyclic coumarin derivatives. 

5. Conclusions 

In this research, spiro-heterocyclic coumarin derivatives 

were synthesized, characterized and evaluated for their bi-

ological activity against S. aureus (ATCC 5923) and E. coli 

(ATCC 25922). Compound 3a showed better antibacterial ac-

tivity of 22.2 and 18.6 mm zone of inhibition at 50 μg/mL con-

centration against the bacterial strains, respectively. Further-

more, these results have been supported by molecular docking 

study, which revealed that the selected compound can bind with 

bacterial DNA gyrase more efficiently, as with the antibiotic clo-

robiocin, through its obtained binding energy parameter.  
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