Cover Image

The solid solution Sr3Ti2-xFexO7-δ (x ≤ 0.5): characterization of Fe (III) – Fe (IV) mixed valences

I. Zvereva, T. Pavlova, V. Pantchuk, V. Semenov, Y. Breard, J. Choisnet


The results of a magneto chemical and Mössbauer characterization are reported for the solid solution Sr3Ti2-xFexO7-δ (x ≤ 0.5), the intergrowth of a double perovskite block and one rock-salt layer type. The charge compensation mechanism induced by the introduction of iron atoms in the matrix of Sr3Ti2O7 is sensitive to the conditions of synthesis, namely an oxidation process triggers the formation of mixed Fe(III)-Fe(IV) valences. The crystallographic characterization - variation of the cell parameters and structure calculations – brings evidence for the respective occurrence of mixed valences and oxygen vacancies which form in the middle plane of the double perovskite block. Ferromagnetic exchange interactions which are absent in the Fe(III) containing compositions, appear and progressively strengthen depending on the oxidizing treatment. They are ascribed to the presence of an increasing amount of Fe(IV) species. Remarkably, a mixed valence state of iron forms during annealing in air with an increasing contribution of the Fe(IV) species for the larger iron contents, as deduced from Mössbauer data.


layered oxides; solid solutions; iron; mixed valence; magnetic susceptibility; Mössbauer spectrometry

Full Text:



Nguyen N, Choisnet J, Hervieu M, Raveau B. Oxygen defect K2NiF4-type oxides: The compounds La2−xSrxCuO4-x/2+d. J Solid State Chem. 1981;39:120-7. doi:10.1016/0022-4596(81)90310-8

Ando Y, Sera M, Yamagata S, Kondoh S, Onoda M, Sato M. Normal state properties of La2−xSrxCuO4 and La2SrCu2Oy. Solid State Comm. 1989;70:303-8. doi:10.1016/0038-1098(89)90332-3

Kakol Z, Spalek J, Honig JM. Superconductivity and antiferromagnetism in La2−xSrxNiO4. J Solid State Chem. 1989;79:288-92. doi:10.1016/0022-4596(89)90277-6

Manthiram A, Tang JP, Manivannan V. Factors Influencing the Stabilization of Ni+ in Perovskite-Related Oxides. J Solid State Chem. 1999;148:499-507. doi:10.1006/jssc.1999.8487

Seshadri R, Martin C, Maignan A, Hervieu M, Raveau B, Rao CNR. Structure and magnetotransport properties of the layered manganites Re1.2Sr1.8Mn2O7(RE = La, Pr, Nd). J Mater Chem. 1996;6:1585-90. doi:10.1039/JM9960601585

Battle PD, Rosseinsky MJ. Synthesis, structure, and magnetic properties of n=2 Ruddlesden–Popper manganates. Curr Opin Solid State Mater Sci. 1999;4:163-70. doi:10.1016/S1359-0286(99)00012-1

Volkova NE, Kolotygin VA, Gavrilova LYa, Kharton VV, Cherepanov VA. Nonstoichiometry, thermal expansion and oxygen permeability of SmBaCo2−xCuxO6−δ. Solid State Ionics. 2014;260:15-20. doi:10.1016/j.ssi.2014.03.003

Battle PD, Green MA, Laskey NS, Millburn JE, Murphy L, Rosseinsky MJ, Sullivan SP, Vente JF. Layered Ruddlesden−Popper Manganese Oxides: Synthesis and Cation Ordering. Chem Mater. 1997;9:552-9. doi:10.1021/cm960398r

Dann SE, Weller MT, Currie DB. Structure and oxygen stoichiometry in Sr3Fe2O7−y, 0 ≤ y ≤ 1.0. J Solid State Chem. 1992;97:179-85. doi:10.1016/0022-4596(92)90023-O

Lee JY, Swinnea JS, Steinfink H, Reiff WM. The Crystal Chemistry and Physical Properties of the Triple Layer Perovskite Intergrowths LaSr3Fe3O10-δ and LaSr3(Fe3-xAlx)O10-δ. J Solid State Chem. 1993;103:1-15. doi:10.1006/jssc.1993.1072

Prado F, Manthiram A. Synthesis, Crystal Chemistry, and Electrical and Magnetic Properties of Sr3Fe2−xCoxO7−δ (0≤x≤0.8). J Solid State Chem. 2001;158:307-14. doi:10.1006/jssc.2001.9111

Mori K, Kamiyama T, Kobayashi H, Torii S, Izumi F, Asano H. Crystal structure of Sr3Fe2O7−δ. J Phys Chem Solids. 1999;60:1443-6. doi:10.1016/S0022-3697(99)00158-4

Ghosh S, Adler P. Competing magnetic interactions and large magnetoresistance effects in a layered iron(IV) oxide: citrate–gel synthesis and properties of Sr3Fe1.8Co0.2O~7. Solid State Commun. 2000;116:585-9. doi:10.1016/S0038-1098(00)00400-2

Hodges JP, Short S, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n−1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties. J Solid State Chem. 2000;151:190–209. doi:10.1006/jssc.1999.8640

Zvereva I, Zueva L, Archaimbault F, Crespin M, Choisnet J, Lecompt J. Crystallochemical, magnetic and electrical properties of the K2NiF4 type diluted solid solutions Y0.9Ca1.1CryAl1-yO4 (y≤0.10): evidence for a partial Cr+3->Cr+4 oxidation. Mater Chem Phys. 1997;48:103-10. doi:10.1016/S0254-0584(97)80102-2

Zvereva I, German I, Smirnov Yu, Choisnet J. Evidence of Cr+4 doping in Sr3Ti2O7 from structural, optical and magnetic properties. J Mater Sci Lett. 2001;20:127-30. doi:10.1023/A:1006786119155

Ruddlesden SN, Popper P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 1958;11:54-5. doi:10.1107/S0365110X58000128

Adler P. Charge disproportionation in iron(IV) oxides: electronic properties and magnetism in Sr3Fe2–xTixO7–y annealed at high oxygen pressures. J Mater Chem. 1999;9:471-7. doi:10.1039/A806772D

Shilova Y, Patrakeev M, Mitberg E, Leonodov I, Kozhevnikov V, Poeppelmeier K. Order–Disorder Enhanced Oxygen Conductivity and Electron Transport in Ruddlesden–Popper Ferrite-Titanate Sr3Fe2−xTixO6+δ. J Solid State Chem. 2002;168:275-83. doi:10.1006/jssc.2002.9722

Rodriguez-Carvajal JL. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192:55-69. doi:10.1016/0921-4526(93)90108-I

Shannon DD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32:751-67. doi:10.1107/S0567739476001551

Nguyen N, Er-Rakho L, Michel C, Choisnet J, Raveau B. Intercroissance de feuillets “perovskites lacunaires” et de feuillets type chlorure de sodium: Les oxydes La2−xA1+xCu2O6−x/2 (A = Ca, Sr). Mat. Res. Bull. 1980;15:891-7. doi:10.1016/0025-5408(80)90212-3

Soubeyroux J, Courbin P, Fournes L, Fruchart D, Le Flem G. La phase SrLaFeO4: Structures cristalline et magnétique. J Solid State Chem. 1980;31:313-20. doi:10.1016/0022-4596(80)90093-6

Sharma IB, Singh D, Magotra SK. Effect of substitution of magnetic rare earths for La on the structure, electric transport and magnetic properties of La2SrFe2O7. J Alloys Compd. 1998;269:13–6. doi:10.1016/S0925-8388(98)00153-4

Archaimbault F, Choisnet J, Zvereva I. Crystal chemistry and magnetic properties of the K2NiF4 type diluted solid solution YCaAl1−xCrxO4 (0 ≤ x ≤ 0.10): evidence for Cr3+. Mater Chem Phys. 1993;34:300-5. doi:10.1016/0254-0584(93)90051-M

Kobayashi H, Kira M, Onodera H, Suzuki T, Kanimura T. Electronic state of Sr3Fe2O7−y studied by specific heat and Mössbauer spectroscopy. Physica B. 1997;237:105-7. doi:10.1016/S0921-4526(97)00065-3

Shilova A, Chislova I, Panchuk V, Semenov V, Zvereva I. Evolution of iron electronic state in the solid solutions Gd2-xSr1+xFe2O7-δ. Solid State Phenom. 2013;194:116-9. doi:10.4028/

Al-Rawas AD, Widatallah HM, Al-Harthi SH, Johnson C, Gismelseed AM, Elzain ME, Yousif AA. The formation and structure of mechano-synthesized nanocrystalline Sr3Fe2O6.4: XRD Rietveld, Mössabuer and XPS analyses. Mater Res Bull. 2015;65:142-8. doi:10.1016/j.materresbull.2015.01.026


Copyright (c) 2016 I. Zvereva, T. Pavlova, V. Pantchuk, V. Semenov, Y. Breard, J. Choisnet

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice