The solid solution Sr3Ti2-xFexO7-δ (x ≤ 0.5): characterization of Fe (III) – Fe (IV) mixed valences
Abstract
Keywords
Full Text:
PDFReferences
Nguyen N, Choisnet J, Hervieu M, Raveau B. Oxygen defect K2NiF4-type oxides: The compounds La2−xSrxCuO4-x/2+d. J Solid State Chem. 1981;39:120-7. doi:10.1016/0022-4596(81)90310-8
Ando Y, Sera M, Yamagata S, Kondoh S, Onoda M, Sato M. Normal state properties of La2−xSrxCuO4 and La2SrCu2Oy. Solid State Comm. 1989;70:303-8. doi:10.1016/0038-1098(89)90332-3
Kakol Z, Spalek J, Honig JM. Superconductivity and antiferromagnetism in La2−xSrxNiO4. J Solid State Chem. 1989;79:288-92. doi:10.1016/0022-4596(89)90277-6
Manthiram A, Tang JP, Manivannan V. Factors Influencing the Stabilization of Ni+ in Perovskite-Related Oxides. J Solid State Chem. 1999;148:499-507. doi:10.1006/jssc.1999.8487
Seshadri R, Martin C, Maignan A, Hervieu M, Raveau B, Rao CNR. Structure and magnetotransport properties of the layered manganites Re1.2Sr1.8Mn2O7(RE = La, Pr, Nd). J Mater Chem. 1996;6:1585-90. doi:10.1039/JM9960601585
Battle PD, Rosseinsky MJ. Synthesis, structure, and magnetic properties of n=2 Ruddlesden–Popper manganates. Curr Opin Solid State Mater Sci. 1999;4:163-70. doi:10.1016/S1359-0286(99)00012-1
Volkova NE, Kolotygin VA, Gavrilova LYa, Kharton VV, Cherepanov VA. Nonstoichiometry, thermal expansion and oxygen permeability of SmBaCo2−xCuxO6−δ. Solid State Ionics. 2014;260:15-20. doi:10.1016/j.ssi.2014.03.003
Battle PD, Green MA, Laskey NS, Millburn JE, Murphy L, Rosseinsky MJ, Sullivan SP, Vente JF. Layered Ruddlesden−Popper Manganese Oxides: Synthesis and Cation Ordering. Chem Mater. 1997;9:552-9. doi:10.1021/cm960398r
Dann SE, Weller MT, Currie DB. Structure and oxygen stoichiometry in Sr3Fe2O7−y, 0 ≤ y ≤ 1.0. J Solid State Chem. 1992;97:179-85. doi:10.1016/0022-4596(92)90023-O
Lee JY, Swinnea JS, Steinfink H, Reiff WM. The Crystal Chemistry and Physical Properties of the Triple Layer Perovskite Intergrowths LaSr3Fe3O10-δ and LaSr3(Fe3-xAlx)O10-δ. J Solid State Chem. 1993;103:1-15. doi:10.1006/jssc.1993.1072
Prado F, Manthiram A. Synthesis, Crystal Chemistry, and Electrical and Magnetic Properties of Sr3Fe2−xCoxO7−δ (0≤x≤0.8). J Solid State Chem. 2001;158:307-14. doi:10.1006/jssc.2001.9111
Mori K, Kamiyama T, Kobayashi H, Torii S, Izumi F, Asano H. Crystal structure of Sr3Fe2O7−δ. J Phys Chem Solids. 1999;60:1443-6. doi:10.1016/S0022-3697(99)00158-4
Ghosh S, Adler P. Competing magnetic interactions and large magnetoresistance effects in a layered iron(IV) oxide: citrate–gel synthesis and properties of Sr3Fe1.8Co0.2O~7. Solid State Commun. 2000;116:585-9. doi:10.1016/S0038-1098(00)00400-2
Hodges JP, Short S, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n−1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties. J Solid State Chem. 2000;151:190–209. doi:10.1006/jssc.1999.8640
Zvereva I, Zueva L, Archaimbault F, Crespin M, Choisnet J, Lecompt J. Crystallochemical, magnetic and electrical properties of the K2NiF4 type diluted solid solutions Y0.9Ca1.1CryAl1-yO4 (y≤0.10): evidence for a partial Cr+3->Cr+4 oxidation. Mater Chem Phys. 1997;48:103-10. doi:10.1016/S0254-0584(97)80102-2
Zvereva I, German I, Smirnov Yu, Choisnet J. Evidence of Cr+4 doping in Sr3Ti2O7 from structural, optical and magnetic properties. J Mater Sci Lett. 2001;20:127-30. doi:10.1023/A:1006786119155
Ruddlesden SN, Popper P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 1958;11:54-5. doi:10.1107/S0365110X58000128
Adler P. Charge disproportionation in iron(IV) oxides: electronic properties and magnetism in Sr3Fe2–xTixO7–y annealed at high oxygen pressures. J Mater Chem. 1999;9:471-7. doi:10.1039/A806772D
Shilova Y, Patrakeev M, Mitberg E, Leonodov I, Kozhevnikov V, Poeppelmeier K. Order–Disorder Enhanced Oxygen Conductivity and Electron Transport in Ruddlesden–Popper Ferrite-Titanate Sr3Fe2−xTixO6+δ. J Solid State Chem. 2002;168:275-83. doi:10.1006/jssc.2002.9722
Rodriguez-Carvajal JL. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192:55-69. doi:10.1016/0921-4526(93)90108-I
Shannon DD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32:751-67. doi:10.1107/S0567739476001551
Nguyen N, Er-Rakho L, Michel C, Choisnet J, Raveau B. Intercroissance de feuillets “perovskites lacunaires” et de feuillets type chlorure de sodium: Les oxydes La2−xA1+xCu2O6−x/2 (A = Ca, Sr). Mat. Res. Bull. 1980;15:891-7. doi:10.1016/0025-5408(80)90212-3
Soubeyroux J, Courbin P, Fournes L, Fruchart D, Le Flem G. La phase SrLaFeO4: Structures cristalline et magnétique. J Solid State Chem. 1980;31:313-20. doi:10.1016/0022-4596(80)90093-6
Sharma IB, Singh D, Magotra SK. Effect of substitution of magnetic rare earths for La on the structure, electric transport and magnetic properties of La2SrFe2O7. J Alloys Compd. 1998;269:13–6. doi:10.1016/S0925-8388(98)00153-4
Archaimbault F, Choisnet J, Zvereva I. Crystal chemistry and magnetic properties of the K2NiF4 type diluted solid solution YCaAl1−xCrxO4 (0 ≤ x ≤ 0.10): evidence for Cr3+. Mater Chem Phys. 1993;34:300-5. doi:10.1016/0254-0584(93)90051-M
Kobayashi H, Kira M, Onodera H, Suzuki T, Kanimura T. Electronic state of Sr3Fe2O7−y studied by specific heat and Mössbauer spectroscopy. Physica B. 1997;237:105-7. doi:10.1016/S0921-4526(97)00065-3
Shilova A, Chislova I, Panchuk V, Semenov V, Zvereva I. Evolution of iron electronic state in the solid solutions Gd2-xSr1+xFe2O7-δ. Solid State Phenom. 2013;194:116-9. doi:10.4028/www.scientific.net/SSP.194.116
Al-Rawas AD, Widatallah HM, Al-Harthi SH, Johnson C, Gismelseed AM, Elzain ME, Yousif AA. The formation and structure of mechano-synthesized nanocrystalline Sr3Fe2O6.4: XRD Rietveld, Mössabuer and XPS analyses. Mater Res Bull. 2015;65:142-8. doi:10.1016/j.materresbull.2015.01.026
DOI: https://doi.org/10.15826/chimtech.2016.3.1.004
Copyright (c) 2016 I. Zvereva, T. Pavlova, V. Pantchuk, V. Semenov, Y. Breard, J. Choisnet
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice