Cover Image

Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of

V. A. Cherepanov, L. Ya. Gavrilova, N. E. Volkova, A. S. Urusova, T. V. Aksenova, E. A. Kiselev


Review is dedicated studies of phase equilibria in the systems based on rare earth elements and 3d transition metals. It’s highlighted several structural families of these compounds and is shown that many were found interesting properties for practical application, such as high conductivity up to the superconducting state, magnetic properties, catalytic activity of the processes of afterburning of exhaust gases, the high mobility in the oxygen sublattice and more.


phase equilibrium; manganites; isobaric-isothermal diagrams; solid solutions

Full Text:



Петров А.Н., Кропанев А.Ю., Жуковский В.М., Черепанов В.А., Неудачина Г.К. Условия и механизм твердофазного синтеза кобальтитов РЗЭ состава RCoO3 (R=La, Pr, Nd, Sm, Gd). Ж. неорган. химии 1981;26(12):3190-3194.

Черепанов В.А., Петров А.Н., Кропанев А.Ю., Горчакова О.В., Жуковский В.М. Электрические свойства двойных оксидов редкоземельных элементов и кобальта состава RCoO3. Ж. физич. химии 1981;55(7):1856-1857.

Петров А.Н., Кропанев А.Ю., Жуковский В.М. Термодинамические свойства кобальтитов РЗЭ типа RСоО3. Ж. физич. химии 1984;58(1):50-53.

Кропанев А.Ю., Петров А.Н., Жуковский В.М. Фазовые диаграммы систем Ln-Co-O (Ln=Sm, Eu, Gd, Dy, Ho). Ж. неорган. химии 1983;28(11):2938-2943.

Кропанев А.Ю., Петров А.Н., Термодинамическая устойчивость кобальтитов LnCoO3 (Ln=Sm, Eu, Gd, Dy, Ho) на воздухе. Изв.АН СССР Неорган матер. 1983;19(12):2027-2030. (Kropanev A.Y., Petrov A.N. Thermal-stability of SmCoO3, EuCoO3, GdCoO3, TbCoO3, DyCoO3, HoCoO3 cobaltites in air. Inorg. mater. 1983;19(12):1782-1785.)

Кропанев А.Ю., Петров А.Н., Рабинович Л.Я. Исследование твердофазных взаимодействий Ln2O3 c CoO (Ln=Sm, Eu, Gd, Dy, Ho). Ж. неорган. химии 1983;28(10):2609-2612.

Кропанев А.Ю., Петров А.Н., Рабинович Л.Я. Твердофазный синтез кобальтитов Р.З.Э. состава RCoO3 (R – Sm, Eu, Gd). // Изв. АН СССР. Неорган. матер. 1984;20(1):139-143.

Петров А.Н., Черепанов В.А., Новицкий Е.М., Жуковский В.М. Термодинамика системы La-Co-O. Ж. физич. химии 1984;58(11):2662-2666.

Черепанов В.А., Петров А.Н., Гримова Л.Ю., Новицкий Е.М. Термодинамические свойства системы La-Ni-O. Ж. физич. химии 1983;57(4):859-863.

Петров А.Н., Зуев А.Ю., Черепанов В.А., Кропанев А.Ю., Хрустов В.Р. Фазовые равновесия и термодинамические свойства сложных оксидов в системе La-Cu-O. Изв. АН СССР. Неорган. материалы 1987;23(6):949-954.

Петров А.Н., Зуев А.Ю., Черепанов В.А., Конончук О.Ф. Термодинамические свойства сложных оксидов в системе Pr-Cu-O и Nd-Cu-O. Изв. АН СССР. Неорган. материалы 1987;23(6):1044-1045.

Petrov A.N., Cherepanov V.A., Zuyev A.Yu., Zhukovsky V.M. Thermodynamic stability of ternary oxides in Ln-M-O systems (Ln=La, Pr, Nd; M=Co,Ni,Cu). J. Solid State Chem. 1988;77(1):1-14.

Cherepanov V.A., Barkhatova L.Yu., Petrov A.N. Phase equilibria in the Ln-Mn-O system (Ln=Pr, Nd) and general aspects of the stability of the perovskite phase LnMeO3. J. Phys. Chem. Solids 1994;55(3):229-235.

Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J. Solid State Chem. 1989;83:52-60.

Kamata K., Nakajima T., Hayashi T., Nakamura T. Nonstoichiometric behavoir and phase stability of rare earth manganites at 1200C: 1.LaMnO3. Mater. Res. Bull. 1978;13:49-54.

Kamegashira N., Miyazaki Y. Oxygen pressure over LaMnO3+x. Mater. Chem. Phys. 1984;11:187-194.

van Roosmalen J.A.M., Cordfunke E.H.P., Helmhold R.B., Zandbergen H.W. The defect chemistry of LaMnO3. 2. Structural aspects of LaMnO3+. J. Solid State Chem. 1994;110:100-105.

van Roosmalen J.A.M., Cordfunke E.H.P. The defect chemistry of LaMnO3. 3. The density of (La,A)MnO3+ (A=Ca, Sr, Ba). J. Solid State Chem. 1994;110:106-108.

van Roosmalen J.A.M., Cordfunke E.H.P. The defect chemistry of LaMnO3. 4. Defect model for LaMnO3+. J. Solid State Chem. 1994;110:109-112.

Tofield B.C., Scott W.R. Oxidative nonstoichiometry in perovskites, an experimental surwey; the defect structure of an oxidizes lanthanum manganites by powder neutron diffraction. J. Solid State Chem. 1974;10:183-194.

Hervieu M., Mahesh R., Rangavittal N., Rao C.N.R. Defect structure of LaMnO3. Eur. J. Solid State Inorg. Chem. 1995;32:79-94.

Kamegashira N., Miyazaki Y. Nonstoichiometry and phase transition in NdMnO3. Mater. Res. Bull. 1984;19:1201-1206.

Cherepanov V.A., Barkhatova L.Yu., Petrov A.N., Voronin V.I. Oxygen nonstoichiometry and crystal and defect structure of PrMnO3+y and NdMnO3+y. J. Solid State Chem. 1995;118(1):53-61.

Atsumi T., Ohgushi T., Namikata H., Kamegashira N. Oxygen nonstoichiometry of LnMnO3- (Ln=La, Pr, Nd, Sm and Y). J. Alloys and Comp. 1997;252:67-70.

van Roosmalen J.A.M., van Vlaanderen P., Cordfunke E.H.P., IJdo W.L., IJdo D.J.W. Phases in the perovskite-type LaMnO3+ and the La2O3-Mn2O3 phase diagram. J. Solid State Chem. 1995;114:516-523.

Takeda Y., Nakai S., Kojima T., Kanno R., Imanishi N., Shen Q.G., Yamamoto O., Mori M., Asakawa C., Abe T. Phase relation in the system (La1 xAx)1 yMnO3+z (A=Sr and Ca). Mater. Res. Bull. 1991;26:153-162.

Pollert E., Jirak Z. Study of Pr1 xMn1+xO3 perovskites. J. Solid State Chem. 1980;35:262-266.

Töpfer J., Goodenough J.B. Transport and magnetic properties of the perovskites La1 yMnO3 and LaMn1-zO3. Chem. Mater. 1997;9:1467-1474.

Nakamura K. The defect chemistry of La1−ΔMnO3+δ. J. Solid State Chem. 2003;173(2):299-308.

Wang Y. X., Du Y., Qin R. W., Han B., Du J., Lin J. H. Phase Equilibrium of the La-Ca-Mn-O system. J. Solid State Chem. 2001;156:237-241.

Cherepanov V.A., Barkhatova L.Yu., Voronin V.I. Phase equilibria in the La-Sr-Mn-O system. J. Solid State Chem. 1997;134(1):38-44.

P. Majewski, D. Benne, L. Epple, F. Aldinger Phase equilibria in the system La2O3-SrO-Mn3O4 in air. Intern. J. Inorg. Mater. 2001;3:1257-1259.

Mizusaki J., Tagawa H., Naraya K., Sasamoto T. Nonstoichiometry and thermochemical stability of the perovskite-type La1-xSrxMnO3-. Solid State Ionics. 1991;49:111-118.

Dixon E., Hadermann J., Hayward M.A. Structures and Magnetism of La1−xSrxMnO3−(0.5+x)/2 (0.67 ≤ x ≤ 1) Phases. Chem. Mater. 2012;24:1486−1495.

Hildrum R., Brustad M., Changzhen W. Johannesen Ø. Thermodynamic properties of doped lanthanum manganites. Mater. Res. Bull. 1994;29(8):817-924.

Atsumi T., Kamegashira N. Decomposition oxygen partial pressures of Ln1-xSrxMnO3 (Ln=La, Nd and Dy). J. Alloys and Comp. 1997;257:161-167.

Green M. A., Neumann D. A. Synthesis, Structure, and Electronic Properties of LaCa2Mn2O7. Chem. Mater. 2000;12:90-97.

Seshadri R., Martin C., Hervieu M., Raveau B., Rao C. N. R. Structural Evolution and Electronic Properties of La1+xSr2-xMn2O7. Chem. Mater. 1997;9:270-277.

Shen C. H., Liu R. S., Lin J. G., Huang C. Y. Phase stability study of La1.2Ca1.8Mn2O7. Mater. Res. Bull. 2001;36(5-6):1139-1148.

Cherepanov V.A., Filonova E.A., Voronin V.I., Berger I.F. Phase equilibria in the LaCoO3-LaMnO3-BaCoOz-BaMnO3 system. J. Solid State Chem. 2000;153(2):205-211.

Kozhevnikov V.L., Leonidov I.A., Mitberg E.B., Patrakeev M.V., Baikov Y.M., Zakhvalinskii V.S., Lähderanta E. High-temperature thermopower and conductivity of La1−xBaxMnO3 (0.02≤x≤0.35). J. Solid State Chem. 2003;172(1):1-585.

Radaelli P.G., Marezio M., Hwang H.Y., Cheong S.-W. Structural Phase Diagram of Perovskite A0.7A'0.3MnO3 (A = La, Pr; A' = Ca, Sr, Ba): A New Imma Allotype. J. Solid State Chem. 1996;122(2):444-447.

Millange F., Caignaert V., Domengès B., Raveau B., Suard E. Order-Disorder Phenomena in New LaBaMn2O6-x CMR Perovskites. Crystal and Magnetic Structure. Chem. Mater. 1998;10:1974-1983.

Caignaert V., Millange F., Domengès B., Raveau B. A New Ordered Oxygen-Deficient Manganite Perovskite: LaBaMn2O5.5. Crystal and Magnetic Structure. Chem. Mater. 1999;11:930-938.

Barnabé A., Millange F., Maignan A., Hervieu M., Raveau B., van Tendeloo G., Laffez P. Barium-Based Manganites Ln1-xBaxMnO3 with Ln = Pr, La: Phase Transitions and Magnetoresistance Properties. Chem. Mater. 1998;10:252-259.

Woodward P.M., Vogt T., Cox D.E., Arulraj A., Rao C.N.R., Karen P., Cheetham A.K. Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3 Perovskites at Room Temperature. Chem. Mater. 1998;10:3652-3665.

Филонова Е.А., Кузьмина Е.А., Петров А.Н. Фазовые равновесия и кристаллическая структура фаз, образующихся в системах Nd1 xMxMnO3 (M = Sr, Sm, Gd, Ce). Ж. физич. химии 2003;77(2):199-205. (Filonova E.A., Kuzmina E.A., Petrov A.N. Phase equilibria and the crystal structure of phases formed in Nd1 xMxMnO3 (M = Sr, Sm, Gd, or Ce) systems // Russ. J. Phys. Chem. A. 2003;77(2):147-153.

Chen Y., Yuan H., Tian G., Zhang G., Feng S. Mild hydrothermal synthesis and magnetic properties of the manganates Pr1−xCaxMnO3. J. Solid State Chem. 2007;180(1):167-172.

Castillo-Martínez E., Williams A. J., Attfield J. P. High-temperature neutron diffraction study of the cation ordered perovskites TbBaMn2O5+x and TbBaMn2O5.5−y. J. Solid State Chem. 2006;179(11):3505-3510.

Millange F., Suard E., Caignaert V., Raveau B. YBaMn2O5: crystal and magnetic structure reinvestigation. Mater. Res. Bull. 1999;34(1):1-9.

Klimkowicz A., Świerczek K., Takasaki A., Molenda J., Dabrowski B. Crystal structure and oxygen storage properties of BaLnMn2O5+δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides. Mater. Res. Bull. 2015;65:116-122.

Cheruy M.N.D., Joubert J.C. Donnees cristallographiques sur une nouvelle serie de manganites mixtes de terre rare et d'alcalino-terreux. J. Solid State Chem. 1981;40(1):14-19.

Meng J., Satoh H., Kamegajhira N. Crystal structure refinement of tetragonal BaTb2Mn2O7. J. Alloys and Comp. 1996;244:75-78.

Kamegashira N., Satoh H., Mikami T. Superstructure of tetragonal BaGd2Mn2O7. J. Alloys and Comp. 2000;311:69-73.

Lamire M., Daoudi A. Les solutions solides Sr3−xLnxMn2O7 (Ln = La, Nd, Sm, Gd). J. Solid State Chem. 1984;55(3):327-330.

Missyul A.B., Zvereva I.A., Palstra T.T.M. The formation of the complex manganites LnSr2Mn2O7 (Ln = La, Nd, Gd). Mater. Res. Bull. 2012;47(12):4156–4160.

Ueno S., Meng J., Kamegashira N., Saito-Nakano H., Enami K. Crystal structure of a layered perovskite, barium europium manganese oxide [BaEu2Mn2O7]. Mater. Res. Bull. 1996;31(5):497-502.

Mahesh R., Mahendiran R., Raychaudhuri A.K., Rao C.N.R. Effect of Dimensionality on the Giant Magnetoresistance of the Manganates: A Study of the (La, Sr)n+1MnnO3n+1 Family. J. Solid State Chem. 1996;122(2):448-450.

Benabad A., Daoudi A, Salmon R., Le G. Flem Les phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) at M1+xLa1−xMnO4 (M = Sr, Ba). J. Solid State Chem. 1977;22(2):121-126.

Kamegashira N., Ueno S., Saito-Nakano H., Enami K. Physical properties and high resolution electron microscope study of barium neodymium manganese tetra oxide [BaNdMnO4]. Mater. Res. Bull. 1994;29(2):111-217.

Taguchi H., Kido H., Kato M., Hirota K. The crystal structure and electrical properties of K2NiF4-type (Ca2−xSmx)MnO4. Mater. Res. Bull. 2015;64:318-322.

Gaudin E., Goglio G., Besnard A., Darriet J. Synthesis, crystal structure, and magnetic properties of the manganate La2Ca2MnO6(O2) related to the hexagonal perovskite-type structure. J. Solid State Chem. 2003;175(1)124-131.

Wang Y.-X., Bie L.-J., Du Y., Lin J.-H., Loong C-K., Richardson Jr J.W., You Li -P. Hexagonal perovskite-intergrowth manganates: Ln2Ca2MnO7 (Ln=La, Nd and Sm). J. Solid State Chem. 2004;177(1):65-72.

Гаврилова Л.Я., Аксенова Т.В., Черепанов В.А. Фазовые равновесия и кристаллическая структура сложных оксидов в системе La–M–Fe–O (M = Ca, Sr). Ж. неорганич. химии 2008;53(6):1027-1033. (Gavrilova L.Ya., Aksenova T.V., Cherepanov V.A. Phase Equilibria and Crystal Structures of Complex Oxides in Systems La–M–Fe–O (M = Ca or Sr). Russ. J. Inorg. Chem. 2008;53(6):953-958.)

Dann S.E., Currie D.B., Weller M.T., Thomas M.F., Al-Rawwas A.D. The Effect of Oxygen Stoichiometry on Phase Relations and Structure in the System La1-xSrxFeO3-δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 1994;109(1):134-144.

Patrakeev M. V., Bahteeva J. A., Mitberg E. B., Leonidov I. A., Kozhevnikov V. L., Poeppelmeier K. R. Electron/hole and ion transport in La1−xSrxFeO3−. J. Solid State Chem. 2003;172(1):219-231.

Alario-Franco M.A., Henche M.J.R., Vallet M., Calbe J.M.G., Grenier J.-C., Wattiaux A., Hagenmuller P. Microdomain texture and oxygen excess in the calcium-lanthanum ferrite: Ca2LaFe3O8. J. Solid State Chem. 1983;46(1):23-40.

Battle P.D., Gibb T.C., Nixon S. A study of the ordering of oxygen vacancies in the nonstoichiometric perovskite Sr2LaFe3O8+y by Mössbauer spectroscopy and a comparison with SrFeO3−y. J. Solid State Chem. 1989;79(1):75-85.

Battle P.D., Gibb T.C., Nixon S. A study of the ordering of oxygen vacancies in the rare-earth perovskites Sr2MFe3O8+y by Mössbauer spectroscopy. J. Solid State Chem. 1989;79(1):86-98.

García-González E., Parras M., González-Calbet J.M., Vallet-Regi M. A HREM Study on La1/3Sr2/3FeO3−y, I: (0 ≤y≤ 0.10). J. Solid State Chem. 1996;124(2):278-286.

García-González E., Parras M., González-Calbet J.M., Vallet-Regi M. A HREM Study on La1/3Sr2/3FeO3-y II. (0.15 ≤y≤ 0.33) J. Solid State Chem. 1996;125(2):125-132.

Tugova E.A., Popova V.F., Zvereva I.A., Gusarov V.V. Phase Diagram of the LaFeO3–LaSrFeO4 System. Glass Physics and Chemistry 2006;32(6):674-676.

Velinov N., Brashkova N., Kozhukharov V. Synthesis, structure and conductivity of layered perovskites. Ceramics – Silikáty 2005;49(1):29-33.

Lee J.Y., Swinnea J.S., Steinfink H., Reiff W.M., Pei S., Jorgensen J.D. The Crystal Chemistry and Physical Properties of the Triple Layer Perovskite Intergrowths LaSr3Fe3O10-δ and LaSr3(Fe3-xAlx)O10-δ. J. Solid State Chem. 1993;103(1):1-15.

Alario-Franco M.A., Joubert J.-C., Lévy J.-P. Anion deficiency in iron perovskites: The SrxNd1−xFeO3−y solid solution I: 0,6 < x < 0,8. Mater. Res. Bull. 1982;17(6):733-740.

Brinks H.W., Fjellvag H., Kjekshus A., Hauback B.C. Structure and Magnetism of Pr1−xSrxFeO3−δ. J. Solid State Chem. 2000;150(2):233-249.

Kim M.G., Ryu K.H., Yo C. H. Nonstoichiometry and Physical Properties of the Two Dimensional Sr1+xNd1-xFeO4-y System. J. Solid State Chem. 1996;123(1):161-167.

Gurusinghe N.N.M., de la Figuera J., Marco J.F., Thomas M.F., Berry F.J., Greaves C. Synthesis and characterisation of the n = 2 Ruddlesden–Popper phases Ln2Sr(Ba)Fe2O7 (Ln = La, Nd, Eu). Mater Res. Bull. 2013;48(9):3537-3544

Gibb T.C., Matsuo M. A study of the oxygen-deficient perovskite Ba1−xLaxFeO3−y by Mössbauer spectroscopy. J. Solid State Chem. 1989;81(1):83-95.

González-Calbet J.M., Parras M., Vallet-Regí M., Grenier J. C. Anionic vacancy distribution in reduced barium-lanthanum ferrites: BaxLa1−xFeO3−x/2 (1/2 ≤ x ≤ 2/3). J. Solid State Chem. 1991;92(1):110-115.

Samaras D., Collomb A., Joubert J.C. Determination des structures de deux ferrites mixtes nouveaux de formule BaLa2Fe2O7 et SrTb2Fe2O7. J. Solid State Chem. 1973;7(3):337-348.

Garcí-González E., Parras M., Gonzlez-Calbet J.M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (I), Ln = Dy, Ho. J. Solid State Chem. 1993;104(2):232-238.

García-González E., Parras M., González-Calbet J.M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (II), Ln = Nd, Sm, and Eu. J. Solid State Chem. 1993;105(2):363-370.

García-González E., Parras M., González-Calbet J.M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (III), Ln = Gd. J. Solid State Chem. 1993;110(1):142-149.

Karen P., Kjekshus A., Huang Q., Lynn J.W., Rosov N., Sora I.N., Karen V.L., Mighell A.D., A. Santoro Neutron and X-Ray Powder Diffraction Study of RBa2Fe3O8+w Phases. J. Solid State Chem. 1998;136(1):21-33.

Lindén J., Kjekshus A., Karen P., Miettinen J., Karppinen M. A 57Fe Mossbauer Study of REBa2Fe3O8+w Triple Perovskites with Varied Oxygen Content (RE=Dy, Er, and Y). J. Solid State Chem. 1998;139(1):168-175.

Lindén J., Karen P., Kjekshus A., Miettinen J., Karppinen M. Partial Oxygen Ordering in Cubic Perovskite REBa2Fe3O8+w(RE=Gd, Eu, Sm, Nd). J. Solid State Chem. 1999;144(2):398-404.

Karen P., Woodward P.M., Santhosh P.N., Vogt T., Stephens P.W., Pagolay S. Verwey Transition under Oxygen Loading in RBaFe2O5+w (R=Nd and Sm). J. Solid State Chem. 2002;167:480-493.

Karen P., Woodward P.M. Synthesis and structural investigations of the double perovskites REBaFe2O5+w (RE=Nd, Sm). J. Mater. Chem. 1999;9:789-797.

Linden J., .Karen P., Yamauchi H., Karppinen M. Valence mixing, separation and ordering in double-cell perovskite GdBaFe2O5+w. J. Magnetism and Magnetic Mat. 2004;272-276:267-268.

Volkova N.E., Lebedev O.I., Gavrilova L.Ya., Turner S., Gauquelin N., Motin Seikh Md., Caignaert V., Cherepanov V.A., Raveau B., Van Tendeloo G. Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2 εBa3+εFe5O15 δ: Implication for Magnetism and Oxygen Stoichiometry. Chem. Mater. 2014;26:6303-6310.

Cherepanov V.A., Gavrilova L.Ya., Barkhatova L.Yu., Voronin V.I., Trifonova M.V., Bukhner O.A. Phase Equilibria in the La-Me-Co-O (Me=Ca, Sr, Ba) Systems. lonics 1998;4:309-315.

Wong-Ng W., Laws W.J., Yan Y.G. Phase diagram and crystal chemistry of the La-Ca-Co-O system. Solid State Sci. 2013;17:107-110.

Cherepanov V.A., Barkhatova L.Yu., Petrov A.N., Voronin V.I. Phase equilibria in the La-Sr-Co-O system and thermodynamic stability of the single phases. Proc. IV Int. Symp. Solid Oxide Fuel Cells (SOFC-IV), Yokohama, Japan, 1995;95-1:434-443.

Гаврилова Л.Я., Черепанов В.А., Сурова Т.В., Баймиструк В.А., Воронин В.И. Фазовые равновесия и кислородная нестехиометрия сложнооксидных фаз в системе La-Ca-Co-O. Ж. физич. химии 2002;76(2):210-216. (Gavrilova L.Ya., Cherepanov V.A., Surova T.V., Baimistruk V.A., Voronin V.I. Phase equilibria and oxygen nonstoichiometry in complex oxide phases of the La-Ca-Co-O system. Russ. J. Phys. Chem. 2002;76(2):150-156.).

Cherepanov V.A., Gavrilova L.Ya., Filonova E.A., Trifonova M.V., Voronin V.I. Phase equilibria in the La-Ba-Co-O system. Mater. Res. Bull. 1999;34(6):983-988.

Kononjuk I.F., Tolochko S.P., Lutsko V.A., Anishchik V.M. Preparation and properties of La1-xCaxCoO3 (0.2≤x≤0.6). J. Solid State Chem. 1983;48:209-214.

Толочко С.П., Кононюк И.Ф. Получение и электрические свойства твердых растворов La1-xCaxCryCo1-yO3 (0≤x≤0.3; 0

Patil S.B., Keer H.V., Chakrabarty D.K. Structural, electrical and magnetic properties in the system La1-xBaxCoO3. Phys. stat. sol. 1979;52a:681-686.

Петров А.Н., Кропанев А.Ю., Жуковский В.М. Термодинамические свойства кобальтитов редкоземельных элементов состава RCoO3. Ж. физич. химии 1984;58(1):50-53.

Seppanen M., Kyto M., Taskinen P. Stability of the ternary phases in the La Co O system. Scand. J. Met. 1979;8:199-204.

Толочко С.П., Кононюк И.Ф., Новик С.Ф. Получение и свойства твердых растворов в системах La2 xSrxCoO4 и La2 xBaxCoO4 (0x1). Ж .неорган. химии 1985;30:2079-2083.

Wong-Ng W., Laws W., Talley K.R., Huang Q., Yan Y., Martin J., Kaduk J.A. Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885ºC in air. J. Solid State Chem. 2014;215:128-134.

Gavrilova L.Ya., Aksenova T. V., N.E. Volkova, Podzorova A. S. Cherepanov V. A. Phase equilibria and crystal structure of the complex oxides in the Ln – Ba – Co – O (Ln = Nd, Sm) systems. J. Solid State Chem. 2011;184(8):2083-2087.

Hervoches C. H., Fjellva H., Kjekshus A., Miksch Fredenborg V., Hauback B. C. Structure and magnetism of rare-earth-substituted Ca3Co2O6. J Solid State Chem. 2007;180:628-635.

Nonga N. V., Ohtaki M. Power factors of late rare earth-doped Ca3Co2O6 oxides. Solid State Commun. 2006;139:232-234.

James M., Cassidy D., Glossens D.J., and Withers R.L. The phase diagram and tetragonal superstructures of the rare earth cobaltate phases Ln1-xSrxCoO3-δ (Ln = La3+, Pr3+, Nd3+, Sm3+, Gd3+,Y3+, Ho3+, Dy3+, Er3+, Tm3+ and Yb3+). J. Solid State Chem. 2004;177:1886-1895.

Withers R.L., James M., and Glossens D.J. Atomic ordering in the doped rare earth cobaltate Ln0.33Sr0.67CoO3-δ (Ln = Y3+, Ho3+ and Dy3+). J. Solid State Chem. 2003;174:198-208.

James M., Avdeev M., Barnes P., Morales L., Wallwork K., Withers R. Orthorhombic superstructures within the rare earth strontium-doped cobaltate perovskites: Ln1-xSrxCoO3-δ (Ln = Y3+, Dy3+ – Yb3+; 0.750≤x≤0.875). J. Solid State Chem. 2007;180:2233-2247.

Istomin S.Ya., Drozhzhin O.A., Svensson G., Antipov E.V. Synthesis and characterization of Sr1-xLnxCoO3-δ, Ln = Y, Sm-Tm, 0.1≤x≤0.5. Solid State Sci. 2004;6:539-546.

Thorogood G.J, Orain P.-Y., Ouvry M., Piriou B., Tedesco T., Wallwork K.S., Herrmann J., James M. Structure, crystal chemistry and magnetism of rare earth calcium-doped cobaltates: Ln2 xCaxCoO4+δ (Ln=Pr, Nd, Sm, Eu, Gd). Solid State Sci. 2011;13:2113-2123.

Taguchi H., Kido H., Tabata T. Relationship between crystal structure and electrical property of K2NiF4 -type (Ca1 xNd1+x)CoO4-. Physica B 2004;344:271-277.

Wang Y., NieH.,Wang S., Valshook V. A2−αAα′BO4-type oxides as cathode materials for IT-SOFC (A=Pr, Sm; A′=Sr; B=Fe, Co). Solid State lonics 2006;60:1174-1178.

Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and Magnetic Studies of Ordered Oxygen – Deficient Perovskites LnBaCo2O5+d, Closely Related to the “112” Structure. J. Solid State Chem. 1999;142:247-260.

Anderson P.S., Kirk C.A., Knudsen J., Reaney I.M. West A.R. Structural characterization of REBaCo2O6-δ phases (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Но). Solid State Sci. 2005;7:1149-1156.

Zhang K., Ge L., Ran R., Shao Z., Lio S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permiation membranes and cathodes of SOFCs. Acta Mater. 2008;56:4876-4889.

Motin Seikh Md., Simon Ch., Caignaert V., Pralong V., Lepetit M. B., Boudin S., Raveau B. New Magnetic Transitions in the Ordered Oxygen-Deficient Perovskite LnBaCo2O5.50+δ. Chem. Mater. 2008;20:231-238.

Kim J.-H., Kim Y., Connor P.A., Irvine J., Bae J., Zhou W. Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+δ, a potential cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources 2009;194:704-711.

Rautama E.-L., Caignaert V. Boullay Ph., Kundu Asish K., Pralong V., Karppinen M., Ritter C., Raveau B. New Member of the “112” Family, LaBaCo2O5.5: Synthesis, Structure, and Magnetism. Chem. Mater. 2009;21:102-109.

Aksenova T.V., Gavrilova L.Yu., Yaremchenko A.A., Cherepanov V.A., Kharton V.V. Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5+δ and SmBaCo2O5+δ. Mat. Res. Bull. 2010;45:1288-1292.

Аксенова Т.В., Гаврилова Л.Я., Цветков Д.С., Воронин В.И., Черепанов В.А. Кристаллическая структура и физико-химические свойства слоистых перовскитоподобных фаз LnBaCo2O5+δ. Ж. физич. химии 2011;85(3):493-499.

Gillie L.J., Hadermann J., Hervieu M., Maignan A., Martin C. Oxygen Vacancy Ordering in the Double-layered Ruddlesden-Popper Cobaltite Sm2BaCo2O7-δ Chem. Mater. 2008;20:6231-6237.

Siwen L., Yufang R. The synthesis and physical properties of the new layered lanthanide alkaline earth cobalt oxides [Ln2MCo2O7 (Ln=Sm, Gd; M=Sr, Ba)]. Mater. Res. Bull. 1994;29(9):993-1000.


Copyright (c) 2015 V. A. Cherepanov, L. Ya. Gavrilova, N. E. Volkova, A. S. Urusova, T. V. Aksenova, E. Kiselev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)
Copyright Notice