Cover Image

Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of

V. A. Cherepanov, L. Ya. Gavrilova, N. E. Volkova, A. S. Urusova, T. V. Aksenova, E. A. Kiselev

Abstract


Review is dedicated studies of phase equilibria in the systems based on rare earth elements and 3d transition metals. It’s highlighted several structural families of these compounds and is shown that many were found interesting properties for practical application, such as high conductivity up to the superconducting state, magnetic properties, catalytic activity of the processes of afterburning of exhaust gases, the high mobility in the oxygen sublattice and more.

Keywords


phase equilibrium; manganites; isobaric-isothermal diagrams; solid solutions

Full Text:

PDF

References


Petrov A. N., Cropanev A. Yu., Zhukovsky M. V., Cherepanov V. A., Neudachina G. K. Conditions and mechanism of solid-phase synthesis of cobaltites of the REE composition of RCoO3 (R=La, Pr, Nd, Sm, Gd). J. Neorgan. Chemistry. 1981;26(12):3190-3194.

Cherepanov V. A., Petrov A. N., Cropanev A. Yu., Gorchakova O. V., Zhukovsky V. M. Electrical properties of double oxides of rare earth elements and cobalt composition of RCoO3. J. Physical. Chemistry. 1981;55(7):1856-1857.

Petrov A. N., Cropanev A. Yu., Zhukovsky V. M. Thermodynamic properties of cobaltites REE type RСоО3. J. Physical. Chemistry. 1984;58(1):50-53.

Cropanev A. Yu., Petrov A. N., Zhukovsky V. M. Phase diagram of the systems Ln-Co-O (Ln=Sm, Eu, Gd, Dy, Ho). J. Neorgan. Chemistry. 1983;28(11):2938-2943.

Kropanev A. Yu., Petrov A. N. Thermal-stability of SmCoO3, EuCoO3, GdCoO3, TbCoO3, DyCoO3, HoCoO3 cobaltites in air. Inorg. mater. 1983;19(12):1782-1785.

Kropanev A. Yu., Petrov A. N., Rabinovich, J. L. Study of solid-phase interactions with CoO Ln2O3 (Ln=Sm, Eu, Gd, Dy, Ho). J. Neorgan. Chemistry. 1983;28(10):2609-2612.

Kropanev A. Yu., Petrov A. N., Rabinovich L. Y. Solid-phase synthesis of cobaltites R. E. Z. composition of RCoO3 (R is Sm, Eu, Gd). Izv. academy of sciences of the USSR. Neorgan. mater. 1984;20(1):139-143.

Petrov A. N., Cherepanov V. A., Nowicki E. M., Zhukovskiy V. M. Thermodynamics of the system La-Co-O. J. Physical. Chemistry. 1984;58(11):2662-2666.

Cherepanov V. A., Petrov A. N., Gromova L. J., Nowicki, E. M. Thermodynamic properties of the system La-Ni-O. J. Physical. Chemistry. 1983;57(4):859-863.

Petrov A. N., Zuev Y. A., Cherepanov V. A., Kropanev A. Yu., Khrustov V. R. Phase equilibria and thermodynamic properties of complex oxides in the system La-Cu-O. Izv. Academy of sciences of the USSR. Neorgan. Materials 1987;23(6):949-954.

Petrov A. N., Zuev, A. Yu., Cherepanov, VA, Kononchuk O. F. Thermodynamic properties of complex oxides in the system Pr-Cu-O and Nd-BA-Cu-O. Izv. Academy of sciences of the USSR. Neorgan. Materials. 1987;23(6):1044-1045.

Petrov A. N., Cherepanov V. A., Zuyev A. Yu., Zhukovsky V. M. Thermodynamic stability of ternary oxides in Ln-M-O systems (Ln=La, Pr, Nd; M=Co,Ni,Cu). J. Solid State Chem. 1988;77(1):1-14. DOI:10.1016/0022-4596(88)90083-7

Cherepanov V. A., Barkhatova L. Yu., Petrov A. N. Phase equilibria in the Ln-Mn-O system (Ln=Pr, Nd) and general aspects of the stability of the perovskite phase LnMeO3. J. Phys. Chem. Solids. 1994;55(3):229-235. DOI:10.1016/0022-3697(94)90137-6

Kuo J. H., Anderson H. U., Sparlin D. M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J. Solid State Chem. 1989;83:52-60. DOI:10.1016/0022-4596(89)90053-4

Kamata K., Nakajima T., Hayashi T., Nakamura T. Nonstoichiometric behavoir and phase stability of rare earth manganites at 1200°C: 1. LaMnO3. Mater. Res. Bull. 1978;13:49-54. DOI:10.1016/0025-5408(78)90026-0

Kamegashira N., Miyazaki Y. Oxygen pressure over LaMnO3+x. Mater. Chem. Phys. 1984;11:187-194. DOI:10.1016/0254-0584(84)90025-7

van Roosmalen J. A. M., Cordfunke E. H. P., Helmhold R. B., Zandbergen H. W. The defect chemistry of LaMnO3±d. 2. Structural aspects of LaMnO3+d. J. Solid State Chem. 1994;110:100-105. DOI:10.1006/jssc.1994.1141

van Roosmalen J. A. M., Cordfunke E. H. P. The defect chemistry of LaMnO3±d. 3. The density of (La,A)MnO3+d (A=Ca, Sr, Ba). J. Solid State Chem. 1994;110:106-108. DOI:10.1006/jssc.1994.1142

van Roosmalen J. A. M., Cordfunke E. H. P. The defect chemistry of LaMnO3±d. 4. Defect model for LaMnO3+d. J. Solid State Chem. 1994;110:109-112. DOI:10.1006/jssc.1994.1143

Tofield B. C., Scott W. R. Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidizes lanthanum manganites by powder neutron diffraction. J. Solid State Chem. 1974;10:183-194. DOI:10.1016/0022-4596(74)90025-5

Hervieu M., Mahesh R., Rangavittal N., Rao C. N. R. Defect structure of LaMnO3. Eur. J. Solid State Inorg. Chem. 1995;32:79-94.

Kamegashira N., Miyazaki Y. Nonstoichiometry and phase transition in NdMnO3. Mater. Res. Bull. 1984;19:1201-1206. DOI:10.1016/0025-5408(84)90072-2

Cherepanov V. A., Barkhatova L. Yu., Petrov A. N., Voronin V. I. Oxygen nonstoichiometry and crystal and defect structure of PrMnO3+y and NdMnO3+y. J. Solid State Chem. 1995;118(1):53-61. DOI:10.1006/jssc.1995.1309

Atsumi T., Ohgushi T., Namikata H., Kamegashira N. Oxygen nonstoichiometry of LnMnO3-d (Ln=La, Pr, Nd, Sm and Y). J. Alloys and Comp. 1997;252:67-70. DOI:10.1016/S0925-8388(96)02610-2

van Roosmalen J. A. M., van Vlaanderen P., Cordfunke E. H. P., IJdo W. L., IJdo D. J. W. Phases in the perovskite-type LaMnO3+d and the La2O3-Mn2O3 phase diagram. J. Solid State Chem. 1995;114:516-523. DOI:10.1006/jssc.1995.1078

Takeda Y., Nakai S., Kojima T., Kanno R., Imanishi N., Shen Q. G., Yamamoto O., Mori M., Asakawa C., Abe T. Phase relation in the system (La1-xAx)1-yMnO3+z (A=Sr and Ca). Mater. Res. Bull. 1991;26:153-162. DOI:10.1016/0025-5408(91)90005-7

Pollert E., Jirak Z. Study of Pr1-xMn1+xO3 perovskites. J. Solid State Chem. 1980;35:262-266. DOI:10.1016/0022-4596(80)90501-0

Töpfer J., Goodenough J. B. Transport and magnetic properties of the perovskites La1-yMnO3 and LaMn1-zO3. Chem. Mater. 1997;9:1467-1474. DOI:10.1021/cm9700211

Nakamura K. The defect chemistry of La1−ΔMnO3+δ. J. Solid State Chem. 2003;173(2):299-308. DOI:10.1016/S0022-4596(03)00091-4

Wang Y. X., Du Y., Qin R. W., Han B., Du J., Lin J. H. Phase Equilibrium of the La-Ca-Mn-O system. J. Solid State Chem. 2001;156:237-241. DOI:10.1006/jssc.2000.8994

Cherepanov V. A., Barkhatova L. Yu., Voronin V. I. Phase equilibria in the La-Sr-Mn-O system. J. Solid State Chem. 1997;134(1):38-44. DOI:10.1006/jssc.1997.7532

P. Majewski, D. Benne, L. Epple F. Aldinger Phase equilibria in the system La2O3-SrO-Mn3O4 in air. Intern. J. Inorg. Mater. 2001;3:1257-1259. DOI:10.1016/S1466-6049(01)00156-8

Mizusaki J., Tagawa H., Naraya K., Sasamoto T. Nonstoichiometry and thermochemical stability of the perovskite-type La1-xSrxMnO3-d. Solid State Ionics. 1991;49:111-118. DOI:10.1016/0167-2738(91)90076-N

Dixon E., Hadermann J., Hayward M. A. Structures and Magnetism of La1−xSrxMnO3−(0.5+x)/2 (0.67 ≤ x ≤ 1) Phases. Chem. Mater. 2012;24:1486−1495. DOI:10.1021/cm300199b

Hildrum R., Brustad M., Changzhen W., Johannesen Ø. Thermodynamic properties of doped lanthanum manganites. Mater. Res. Bull. 1994;29(8):817-924. DOI:10.1016/0025-5408(94)90005-1

Atsumi T., Kamegashira N. Decomposition oxygen partial pressures of Ln1-xSrxMnO3 (Ln=La, Nd and Dy). J. Alloys and Comp. 1997;257:161-167. DOI:10.1016/S0925-8388(97)00013-3

Green M. A., Neumann D. A. Synthesis, Structure, and Electronic Properties of LaCa2Mn2O7. Chem. Mater. 2000;12:90-97. DOI:10.1021/cm991094i

Seshadri R., Martin C., Hervieu M., Raveau B., Rao C. N. R. Structural Evolution and Electronic Properties of La1+xSr2-xMn2O7. Chem. Mater. 1997;9:270-277. DOI:10.1021/cm960342x

Shen C. H., Liu R. S., Lin J. G., Huang C. Y. Phase stability study of La1.2Ca1.8Mn2O7. Mater. Res. Bull. 2001;36(5-6):1139-1148. DOI:10.1016/S0025-5408(01)00588-8

Cherepanov V. A., Filonova E. A., Voronin V. I., Berger I. F. Phase equilibria in the LaCoO3-LaMnO3-BaCoOz-BaMnO3 system. J. Solid State Chem. 2000;153(2):205-211. DOI:10.1006/jssc.2000.8743

Kozhevnikov V. L., Leonidov I. A., Mitberg E. B., Patrakeev M. V., Baikov Y. M., Zakhvalinskii V. S., Lähderanta E. High-temperature thermopower and conductivity of La1−xBaxMnO3 (0.02≤x≤0.35). J. Solid State Chem. 2003;172(1):1-585. DOI:10.1016/S0022-4596(03)00050-1

Radaelli P. G., Marezio M., Hwang H. Y., Cheong S.-W. Structural Phase Diagram of Perovskite A0.7A'0.3MnO3 (A = La, Pr; A' = Ca, Sr, Ba): A New Imma Allotype. J. Solid State Chem. 1996;122(2):444-447. DOI:10.1006/jssc.1996.0140

Millange F., Caignaert V., Domengès B., Raveau B., Suard E. Order-Disorder Phenomena in New LaBaMn2O6-x CMR Perovskites. Crystal and Magnetic Structure. Chem. Mater. 1998;10:1974-1983. DOI:10.1021/cm980130v

Caignaert V., Millange F., Domengès B., Raveau B. A New Ordered Oxygen-Deficient Manganite Perovskite: LaBaMn2O5.5. Crystal and Magnetic Structure. Chem. Mater. 1999;11:930-938. DOI:10.1021/cm980469h

Barnabé A., Millange F., Maignan A., Hervieu M., Raveau B., van Tendeloo G., Laffez P. Barium-Based Manganites Ln1-xBaxMnO3 with Ln = Pr, La: Phase Transitions and Magnetoresistance Properties. Chem. Mater. 1998;10:252-259. DOI:10.1021/cm9704084

Woodward P. M., Vogt T., Cox D. E., Arulraj A., Rao C. N. R., Karen P., Cheetham A. K. Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3 Perovskites at Room Temperature. Chem. Mater. 1998;10:3652-3665. DOI:10.1021/cm980397u

Filonova E. A., Kuzmina E. A., Petrov A. N. Phase equilibria and the crystal structure of phases formed in Nd1-xMxMnO3 (M = Sr, Sm, Gd, or Ce) systems. Russ. J. Phys. Chem. A. 2003;77(2):147-153.

Chen Y., Yuan H., Tian G., Zhang G., Feng S. Mild hydrothermal synthesis and magnetic properties of the manganates Pr1−xCaxMnO3. J. Solid State Chem. 2007;180(1):167-172. DOI:10.1016/j.jssc.2006.09.029

Castillo-Martínez E., Williams A. J., Attfield J. P. High-temperature neutron diffraction study of the cation ordered perovskites TbBaMn2O5+x and TbBaMn2O5.5−y. J. Solid State Chem. 2006;179(11):3505-3510. DOI:10.1016/j.jssc.2006.07.019

Millange F., Suard E., Caignaert V., Raveau B. Y. BaMn2O5: crystal and magnetic structure reinvestigation. Mater. Res. Bull. 1999;34(1):1-9. DOI:10.1016/S0025-5408(98)00214-1

Klimkowicz A., Świerczek K., Takasaki A., Molenda J., Dabrowski B. Crystal structure and oxygen storage properties of BaLnMn2O5+δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides. Mater. Res. Bull. 2015;65:116-122. DOI:10.1016/j.materresbull.2015.01.041

Cheruy M. N. D., Joubert J. C. Donnees cristallographiques sur une nouvelle serie de manganites mixtes de terre rare et d'alcalino-terreux. J. Solid State Chem. 1981;40(1):14-19. DOI:10.1016/0022-4596(81)90354-6

Meng J., Satoh H., Kamegajhira N. Crystal structure refinement of tetragonal BaTb2Mn2O7. J. Alloys and Comp. 1996;244:75-78. DOI:10.1016/S0925-8388(96)02439-5

Kamegashira N., Satoh H., Mikami T. Superstructure of tetragonal BaGd2Mn2O7. J. Alloys and Comp. 2000;311:69-73. DOI:10.1016/S0925-8388(00)00864-1

Lamire M., Daoudi A. Les solutions solides Sr3−xLnxMn2O7 (Ln = La, Nd, Sm, Gd). J. Solid State Chem. 1984;55(3):327-330. DOI:10.1016/0022-4596(84)90285-8

Missyul A. B., Zvereva I. A., Palstra T. T. M. The formation of the complex manganites LnSr2Mn2O7 (Ln = La, Nd, Gd). Mater. Res. Bull. 2012;47(12):4156-4160. DOI:10.1016/j.materresbull.2012.08.080

Ueno S., Meng J., Kamegashira N., Saito-Nakano H., Enami K. Crystal structure of a layered perovskite, barium europium manganese oxide [BaEu2Mn2O7]. Mater. Res. Bull. 1996;31(5):497-502. DOI:10.1016/S0025-5408(96)00032-3

Mahesh R., Mahendiran R., Raychaudhuri A. K., Rao C. N. R. Effect of Dimensionality on the Giant Magnetoresistance of the Manganates: A Study of the (La, Sr)n+1MnnO3n+1 Family. J. Solid State Chem. 1996;122(2):448-450. DOI:10.1006/jssc.1996.0141

Benabad A., Daoudi A., Salmon R., Le G. Flem Les phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) at M1+xLa1−xMnO4 (M = Sr, Ba). J. Solid State Chem. 1977;22(2):121-126. DOI:10.1016/0022-4596(77)90028-7

Kamegashira N., Ueno S., Saito-Nakano H., Enami K. Physical properties and high resolution electron microscope study of barium neodymium manganese tetra oxide [BaNdMnO4]. Mater. Res. Bull. 1994;29(2):111-217. DOI:10.1016/0025-5408(94)90139-2

Taguchi H., Kido H., Kato M., Hirota K. The crystal structure and electrical properties of K2NiF4-type (Ca2−xSmx)MnO4. Mater. Res. Bull. 2015;64:318-322. DOI:10.1016/j.materresbull.2015.01.022

Gaudin E., Goglio G., Besnard A., Darriet J. Synthesis, crystal structure, and magnetic properties of the manganate La2Ca2MnO6(O2) related to the hexagonal perovskite-type structure. J. Solid State Chem. 2003;175(1)124-131. DOI:10.1016/S0022-4596(03)00043-4

Wang Y.-X., Bie L.-J., Du Y., Lin J.-H., Loong C-K., Richardson Jr J.W., You Li -P. Hexagonal perovskite-intergrowth manganates: Ln2Ca2MnO7 (Ln=La, Nd and Sm). J. Solid State Chem. 2004;177(1):65-72. DOI:10.1016/S0022-4596(03)00310-4

Gavrilova L. Ya., Aksenova T. V., Cherepanov V. A. Phase Equilibria and Crystal Structures of Complex Oxides in Systems La-M-Fe-O (M = Ca or Sr). Russ. J. Inorg. Chem. 2008;53(6):953-958. DOI:10.1134/S0036023608060235

Dann S. E., Currie D. B., Weller M. T., Thomas M. F., Al-Rawwas A. D. The Effect of Oxygen Stoichiometry on Phase Relations and Structure in the System La1-xSrxFeO3-δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 1994;109(1):134-144. DOI:10.1006/jssc.1994.1083

Patrakeev M. V., Bahteeva J. A., Mitberg E. B., Leonidov I. A., Kozhevnikov V. L., Poeppelmeier K. R. Electron/hole and ion transport in La1−xSrxFeO3−d. J. Solid State Chem. 2003;172(1):219-231. DOI:10.1016/S0022-4596(03)00040-9

Alario-Franco M. A., Henche M. J. R., Vallet M., Calbe J. M. G., Grenier J.-C., Wattiaux A., Hagenmuller P. Microdomain texture and oxygen excess in the calciumlanthanum ferrite: Ca2LaFe3O8. J. Solid State Chem. 1983;46(1):23-40. DOI:10.1016/0022-4596(83)90123-8

Battle P. D., Gibb T. C., Nixon S. A study of the ordering of oxygen vacancies in the nonstoichiometric perovskite Sr2LaFe3O8+y by Mössbauer spectroscopy and a comparison with SrFeO3−y. J. Solid State Chem. 1989;79(1):75-85. DOI:10.1016/0022-4596(89)90252-1

Battle P. D., Gibb T. C., Nixon S. A study of the ordering of oxygen vacancies in the rare-earth perovskites Sr2MFe3O8+y by Mössbauer spectroscopy. J. Solid State Chem. 1989;79(1):86-98. DOI:10.1016/0022-4596(89)90253-3

García-González E., Parras M., González-Calbet J. M., Vallet-Regi M. A HREM Study on La1/3Sr2/3FeO3−y, I: (0 ≤y≤ 0.10). J. Solid State Chem. 1996;124(2):278-286. DOI:10.1006/jssc.1996.0237

García-González E., Parras M., González-Calbet J. M., Vallet-Regi M. A HREM Study on La1/3Sr2/3FeO3-y II. (0.15 ≤y≤ 0.33) J. Solid State Chem. 1996;125(2):125-132. DOI:10.1006/jssc.1996.0274

Tugova E. A., Popova V. F., Zvereva I. A., Gusarov V. V. Phase Diagram of the LaFeO3-LaSrFeO4 System. Glass Physics and Chemistry 2006;32(6):674-676. DOI:10.1134/S1087659606060137

Velinov N., Brashkova N., Kozhukharov V. Synthesis, structure and conductivity of layered perovskites. Ceramics - Silikáty. 2005;49(1):29-33.

Lee J. Y., Swinnea J. S., Steinfink H., Reiff W. M., Pei S., Jorgensen J. D. The Crystal Chemistry and Physical Properties of the Triple Layer Perovskite Intergrowths LaSr3Fe3O10-δ and LaSr3(Fe3-xAlx)O10-δ. J. Solid State Chem. 1993;103(1):1-15. DOI:10.1006/jssc.1993.1072

Alario-Franco M. A., Joubert J.-C., Lévy J.-P. Anion deficiency in iron perovskites: The SrxNd1−xFeO3−y solid solution I: 0,6 < x < 0,8. Mater. Res. Bull. 1982;17(6):733-740. DOI:10.1016/0025-5408(82)90023-X

Brinks H. W., Fjellvag H., Kjekshus A., Hauback B. C. Structure and Magnetism of Pr1−xSrxFeO3−δ. J. Solid State Chem. 2000;150(2):233-249. DOI:10.1006/jssc.1999.8551

Kim M. G., Ryu K. H., Yo C. H. Nonstoichiometry and Physical Properties of the Two Dimensional Sr1+xNd1-xFeO4-y System. J. Solid State Chem. 1996;123(1):161-167. DOI:10.1006/jssc.1996.0164

Gurusinghe N. N. M., de la Figuera J., Marco J.F., Thomas M. F., Berry F. J., Greaves C. Synthesis and characterisation of the n = 2 Ruddlesden-Popper phases Ln2Sr(Ba)Fe2O7 (Ln = La, Nd, Eu). Mater Res. Bull. 2013;48(9):3537-3544. DOI:10.1016/j.materresbull.2013.05.058

Gibb T. C., Matsuo M. A study of the oxygen-deficient perovskite Ba1−xLaxFeO3−y by Mössbauer spectroscopy. J. Solid State Chem. 1989;81(1):83-95. DOI:10.1016/0022-4596(89)90205-3

González-Calbet J. M., Parras M., Vallet-Regí M., Grenier J. C. Anionic vacancy distribution in reduced barium-lanthanum ferrites: BaxLa1−xFeO3−x/2 (1/2 ≤ x ≤ 2/3). J. Solid State Chem. 1991;92(1):110-115. DOI:10.1016/0022-4596(91)90247-F

Samaras D., Collomb A., Joubert J. C. Determination des structures de deux ferrites mixtes nouveaux de formule BaLa2Fe2O7 et SrTb2Fe2O7. J. Solid State Chem. 1973;7(3):337-348. DOI:10.1016/0022-4596(73)90142-4

Garcí-González E., Parras M., Gonzlez-Calbet J. M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (I), Ln = Dy, Ho. J. Solid State Chem. 1993;104(2):232-238. DOI:10.1006/jssc.1993.1158

García-González E., Parras M., González-Calbet J. M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (II), Ln = Nd, Sm, and Eu. J. Solid State Chem. 1993;105(2):363-370. DOI:10.1006/jssc.1993.1226

García-González E., Parras M., González-Calbet J. M., Vallet-Regí M. A New "123" Family: LnBa2Fe3Oz, (III), Ln = Gd. J. Solid State Chem. 1993;110(1):142-149. DOI:10.1006/jssc.1994.1148

Karen P., Kjekshus A., Huang Q., Lynn J. W., Rosov N., Sora I. N., Karen V. L., Mighell A. D., A Santoro Neutron and X-Ray Powder Diffraction Study of RBa2Fe3O8+w Phases. J. Solid State Chem. 1998;136(1):21-33. DOI:10.1006/jssc.1997.7636

Lindén J., Kjekshus A., Karen P., Miettinen J., Karppinen M. A 57Fe Mossbauer Study of REBa2Fe3O8+w Triple Perovskites with Varied Oxygen Content (RE=Dy, Er, and Y). J. Solid State Chem. 1998;139(1):168-175. DOI:10.1006/jssc.1998.7828

Lindén J., Karen P., Kjekshus A., Miettinen J., Karppinen M. Partial Oxygen Ordering in Cubic Perovskite REBa2Fe3O8+w(RE=Gd, Eu, Sm, Nd). J. Solid State Chem. 1999;144(2):398-404. DOI:10.1006/jssc.1999.8178

Karen P., Woodward P. M., Santhosh P. N., Vogt T., Stephens P. W., Pagolay S. Verwey Transition under Oxygen Loading in RBaFe2O5+w (R=Nd and Sm). J. Solid State Chem. 2002;167:480-493. DOI:10.1016/S0022-4596(02)99665-9

Karen P., Woodward P. M. Synthesis and structural investigations of the double perovskites REBaFe2O5+w (RE = Nd, Sm). J. Mater. Chem. 1999;9:789-797. DOI:10.1039/a809302d

Linden J., Karen P., Yamauchi H., Karppinen M. Valence mixing, separation and ordering in double-cell perovskite GdBaFe2O5+w. J. Magnetism and Magnetic Mat. 2004;272-276:267-268. DOI:10.1016/j.jmmm.2003.11.181

Volkova N. E., Lebedev O. I., Gavrilova L. Ya., Turner S., Gauquelin N., Motin Seikh Md., Caignaert V., Cherepanov V. A., Raveau B., Van Tendeloo G. Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2-εBa3+εFe5O15-δ: Implication for Magnetism and Oxygen Stoichiometry. Chem. Mater. 2014;26:6303-6310. DOI:10.1021/cm503276p

Cherepanov V. A., Gavrilova L. Ya., Barkhatova L. Yu., Voronin V. I., Trifonova M. V., Bukhner O. A. Phase Equilibria in the La-Me-Co-O (Me=Ca, Sr, Ba) Systems. Lonics. 1998;4:309-315. DOI:10.1007/BF02375959

Wong-Ng W., Laws W. J., Yan Y. G. Phase diagram and crystal chemistry of the La-Ca-Co-O system. Solid State Sci. 2013;17:107-110. DOI:10.1016/j.solidstatesciences.2012.11.021

Cherepanov V. A., Barkhatova L. Yu., Petrov A. N., Voronin V. I. Phase equilibria in the La-Sr-Co-O system and thermodynamic stability of the single phases. Proc. IV Int. Symp. Solid Oxide Fuel Cells (SOFC-IV), Yokohama, Japan, 1995;95-1:434-443. DOI:10.1149/199501.0434PV

Gavrilova L. Ya., Cherepanov V. A., Surova T. V., Baimistruk V. A., Voronin V. I. Phase equilibria and oxygen nonstoichiometry in complex oxide phases of the La-Ca-Co-O system. Russ. J. Phys. Chem. 2002;76(2):150-156.

Cherepanov V. A., Gavrilova L. Ya., Filonova E. A., Trifonova M. V., Voronin V. I. Phase equilibria in the La-Ba-Co-O system. Mater. Res. Bull. 1999;34(6):983-988. DOI:10.1016/S0025-5408(99)00092-6

Kononjuk I. F., Tolochko S. P., Lutsko V. A., Anishchik V. M. Preparation and properties of La1-xCaxCoO3 (0.2≤x≤0.6). J. Solid State Chem. 1983;48:209-214. DOI:10.1016/0022-4596(83)90076-2

Tolochko S. P., Kanonik I. F. Obtaining and electrical properties of solid solutions. Izv. Academy of sciences of the USSR. Neorgan. materials. 1981;27(12):2610-2613.

Patil S. B., Keer H. V., Chakrabarty D. K. Structural, electrical and magnetic properties in the system La1-xBaxCoO3. Phys. stat. sol. 1979;52a:681-686. DOI:10.1002/pssa.2210520240

Petrov A. N., Cropanev A. Yu., Zhukovsky V. M. Thermodynamic properties of cobaltites of rare-earth elements composition of RCoO3. J. Physical. Chemistry. 1984;58(1):50-53.

Seppanen M., Kyto M., Taskinen P. Stability of the ternary phases in the La Co O system. Scand. J. Met. 1979;8:199-204.

Tolochko S. P., Kononiuk I. F., Novik S. F. Preparation and properties of solid solutions in the systems La2-xSrxCoO4 and La2-xBaxCoO4 (0£x£1). J. Neorgan. Chemistry. 1985;30:2079-2083.

Wong-Ng W., Laws W., Talley K. R., Huang Q., Yan Y., Martin J., Kaduk J. A. Phase equilibria and crystal chemistry of the CaO-½Nd2O3-CoOz system at 885ºC in air. J. Solid State Chem. 2014;215:128-134. DOI:10.1016/j.jssc.2014.03.012

Gavrilova L. Ya., Aksenova T. V., Volkova N. E, Podzorova A. S. Cherepanov V. A. Phase equilibria and crystal structure of the complex oxides in the Ln-Ba-Co-O (Ln = Nd, Sm) systems. J. Solid State Chem. 2011;184(8):2083-2087. DOI:10.1016/j.jssc.2011.06.006

Hervoches C. H., Fjellva H., Kjekshus A., Miksch Fredenborg V., Hauback B. C. Structure and magnetism of rare-earth-substituted Ca3Co2O6. J Solid State Chem. 2007;180:628-635. DOI:10.1016/j.jssc.2006.10.037

Nonga N. V., Ohtaki M. Power factors of late rare earth-doped Ca3Co2O6 oxides. Solid State Commun. 2006;139:232-234. DOI:10.1016/j.ssc.2006.05.033

James M., Cassidy D., Glossens D. J., and Withers R. L. The phase diagram and tetragonal superstructures of the rare earth cobaltate phases Ln1-xSrxCoO3-δ (Ln = La3+, Pr3+, Nd3+, Sm3+, Gd3+,Y3+, Ho3+, Dy3+, Er3+, Tm3+ and Yb3+). J. Solid State Chem.2004;177:1886-1895. DOI:10.1016/j.jssc.2004.01.012

Withers R. L., James M., and Glossens D. J. Atomic ordering in the doped rare earth cobaltate Ln0.33Sr0.67CoO3-δ (Ln = Y3+, Ho3+ and Dy3+). J. Solid State Chem. 2003;174:198-208. DOI:10.1016/S0022-4596(03)00227-5

James M., Avdeev M., Barnes P., Morales L., Wallwork K., Withers R. Orthorhombic superstructures within the rare earth strontium-doped cobaltate perovskites: Ln1-xSrxCoO3-δ (Ln = Y3+, Dy3+ - Yb3+; 0.750≤x≤0.875). J. Solid State Chem. 2007;180:2233-2247. DOI:10.1016/j.jssc.2007.04.029

Istomin S. Ya., Drozhzhin O. A., Svensson G., Antipov E. V. Synthesis and characterization of Sr1-xLnxCoO3-δ, Ln = Y, Sm-Tm, 0.1≤x≤0.5. Solid State Sci. 2004;6:539-546. DOI:10.1016/j.solidstatesciences.2004.03.029

Thorogood G. J, Orain P.-Y., Ouvry M., Piriou B., Tedesco T., Wallwork K. S., Herrmann J., James M. Structure, crystal chemistry and magnetism of rare earth calcium-doped cobaltates: Ln2-xCaxCoO4+δ (Ln=Pr, Nd, Sm, Eu, Gd). Solid State Sci. 2011;13:2113-2123. DOI:10.1016/j.solidstatesciences.2011.08.008

Taguchi H., Kido H., Tabata T. Relationship between crystal structure and electrical property of K2NiF4-type (Ca1-xNd1+x)CoO4-d. Physica B 2004;344:271-277. DOI:10.1016/j.physb.2003.09.270

Wang Y., Nie H., Wang S., Valshook V. A2−αAα'BO4-type oxides as cathode materials for IT-SOFC (A=Pr, Sm; A'=Sr; B=Fe, Co). Solid State lonics. 2006;60:1174-1178. DOI:10.1016/j.matlet.2005.10.104

Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and Magnetic Studies of Ordered Oxygen - Deficient Perovskites LnBaCo2O5+d, Closely Related to the "112" Structure. J. Solid State Chem. 1999;142:247-260. DOI:10.1006/jssc.1998.7934

Anderson P. S., Kirk C. A., Knudsen J., Reaney I. M. West A. R. Structural characterization of REBaCo2O6-δ phases (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Но). Solid State Sci. 2005;7:1149-1156. DOI:10.1016/j.solidstatesciences.2005.03.004

Zhang K., Ge L., Ran R., Shao Z., Lio S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permiation membranes and cathodes of SOFCs. Acta Mater. 2008;56:4876-4889. DOI:10.1016/j.actamat.2008.06.004

Motin Seikh Md., Simon Ch., Caignaert V., Pralong V., Lepetit M. B., Boudin S., Raveau B. New Magnetic Transitions in the Ordered Oxygen-Deficient Perovskite LnBaCo2O5.50+δ. Chem. Mater. 2008;20:231-238. DOI:10.1021/cm7026652

Kim J.-H., Kim Y., Connor P. A., Irvine J., Bae J., Zhou W. Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+δ, a potential cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources. 2009;194:704-711. DOI:10.1016/j.jpowsour.2009.06.024

Rautama E.-L., Caignaert V., Boullay Ph., Kundu Asish K., Pralong V., Karppinen M., Ritter C., Raveau B. New Member of the "112" Family, LaBaCo2O5.5: Synthesis, Structure, and Magnetism. Chem. Mater. 2009;21:102-109. DOI:10.1021/cm8021775

Aksenova T. V., Gavrilova L. Yu., Yaremchenko A. A., Cherepanov V. A., Kharton V. V. Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5+δ and SmBaCo2O5+δ. Mat. Res. Bull. 2010;45:1288-1292. DOI:10.1016/j.materresbull.2010.05.004

Aksenova T. V., Gavrilova L. Ya., Tsvetkov D. S., Voronin V. I., Cherepanov V. A. Crystal structure and physico-chemical properties of layered perovskite-like phases LnBaCo2O5+δ. J. Physical. Chemistry. 2011;85(3):493-499. DOI:10.1134/S0036024411030022

Gillie L. J., Hadermann J., Hervieu M., Maignan A., Martin C. Oxygen Vacancy Ordering in the Double-layered Ruddlesden-Popper Cobaltite Sm2BaCo2O7-δ Chem. Mater. 2008;20:6231-6237. DOI:10.1021/cm8010138

Siwen L., Yufang R. The synthesis and physical properties of the new layered lanthanide alkaline earth cobalt oxides [Ln2MCo2O7 (Ln = Sm, Gd; M = Sr, Ba)]. Mater. Res. Bull. 1994;29(9):993-1000. DOI:10.1016/0025-5408(94)90061-2




DOI: https://doi.org/10.15826/chimtech.2015.2.4.028

Copyright (c) 2015 V. A. Cherepanov, L. Ya. Gavrilova, N. E. Volkova, A. S. Urusova, T. V. Aksenova, E. Kiselev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International