Cover Image

Interaction of iron oxide nanoparticles synthesized by laser target evaporation with polyacrylamide in composites and ferrogels

F. Scharf, E. Mikhnevich, A. Safronov

Abstract


Iron oxide magnetic nanoparticles (MNPs) with average diameter 11.7 nm synthesized by laser target evaporation were used for the synthesis of composites and ferrogels based on polyacrylamide network. The chemical composition of MNPs corresponded to maghemite. It was shown that intact MNPs strongly interacted with polyacrylamide polymeric network, while the adsorption of electrostatic stabilizer on the surface of MNPs efficiently prevents such interaction. Synthesis of ferrogels was performed by the radical polymerization of acrylamide in  electrostatically stabilized suspensions of MNPs in water. It was shown that the molecular structure, water uptake, and compression modulus can be controlled by the concentration of monomer taken in the synthesis.


Keywords


nanoparticles; iron oxide; composites; ferrogels; polyacrylamide

Full Text:

PDF

References


Llandro J, Palfreyman JJ, Ionescu A, Barnes CHW. Magnetic biosensor technologies for medical applications: A review. Med Biol Eng Comput. 2010;48(10):977–8. DOI:10.1007/s11517–010–0649–3.

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery (Review). Adv Drug Delivery Rev. 2008;60(15):1638–49. DOI:10.1016/j.addr.2008.08.002.

Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F. Magnetic Hydrogels and Their Potential Biomedical Applications. Adv Func Mater. 2013;23(6):660–72. DOI:10.1002/adfm.201201708.

Grossman JH, McNeil SE. Nanotechnology in cancer medicine. Phys Today. 2012;65(8):38–42. DOI:10.1063/PT.3.1678.

Malumbres A, Martínez G, Mallada R, Hueso JL, Bomatí-Miguel O, Santamaría J. Continuous production of iron-based nanocrystals by laser pyrolysis. Effect of operating variables on size, composition and magnetic response. Nanotechnology. 2013;24(32):325603. DOI:10.1088/0957–4484/24/32/325603.

Muller E, Oestreich Ch, Popp U, Michel G, Staupendahl G, Henneberg KH. Characterization of Nanocrystalline Oxide Powders Prepared by CO2 Laser Evaporation. KONA Powder Part J. 1995;13:79–90. DOI:10.14356/kona.1995012.

Kurland HD, Grabow J, Staupendahl G, Andra W, Dutz S, Bellemann ME. Magnetic iron oxide nanopowders produced by CO2 laser evaporation. J Magn Magn Mater. 2007;311(1):73–7. DOI:10.1016/j.jmmm.2006.10.1166.

Osipov VV, Platonov VV, Uimin MA, Podkin AV. Laser synthesis of magnetic iron oxide nanopowders. Tech Phys. 2012;57(4):543–9. DOI:10.1134/S1063784212040214.

Safronov AP, Beketov IV, Komogortsev SV, Kurlyandskaya GV, Medvedev AI, Leiman DV, Larranaga A, Bhagat SM. Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Advances. 2013;3(5):052135. DOI:10.1063/1.4808368.

Ling GN. Revolution in the Physiology of the Living Cell. Malabar (FL): Krieger Publishing; 1992. 378 p.

Pollack GH. Cells, Gels and the Engines of Life. Seattle: Ebner&Sons; 2001. 305 p.

Galicia JA, Sandre O, Cousin F. Designing magnetic composite materials using aqueous magnetic fluids. J Phys: Condens Matter. 2003;15(15):1379–402. DOI:10.1088/0953–8984/15/15/306.

Galicia JA, Cousin F, Dubois E, Sandre O, Cabuil V, Perzynski R. Static and dynamic structural probing of swollen polyacrylamide ferrogels. Soft Matter. 2009;5(13):2614–24. DOI:10.1039/b819189a.

Galicia JA, Cousin F, Dubois E, Sandre O, Cabuil V, Perzynski R. Local structure of polymeric ferrogels. J Magn Magn Mater. 2011;323(10):1211–5. DOI:10.1016/j.jmmm.2010.11.008.

Kurlyandskaya GV, Fernandez E, Safronov AP, Svalov AV, Beketov I, Burgoa Beitia A, Garcıa-Arribas A, Blyakhman FA. Giant magnetoimpedance biosensor for ferrogel detection: Model system to evaluate properties of natural tissue. Appl Phys Lett. 2015;106(19):193702. DOI:10.1063/1.4921224.

Pearson WB. Handbook of lattice spacing structures of metals and alloys. London: Pergamon Press; 1958. 1044 p.

Shankar A, Safronov AP, Mikhnevich EA, Beketov IV, Kurlyandskaya GV. Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin–Landau–Verwey–Overbeek consideration, interfacial inter- actions and magnetodeformation. Soft Matter. 2017;13:3359–72. DOI:10.1039/ C7SM00534B.

Safronov AP, Istomina AS, Terziyan TV, Polyakova YI, Beketov IV. Influence of Interfacial Adhesion and the Nonequilibrium Glassy Structure of a Polymer on the Enthalpy of Mixing of Polystyrene-Based Filled Composites. Polym Sci, Ser A. 2012;54(3):214–23. DOI:10.1134/S0965545X12030108.

Quesada-Perez M, Maroto-Centeno JA, Forcada J, Hidalgo-Alvarez R. Gel swelling theories: The classical formalism and recent approaches. Soft Matter. 2011;7(22):10536–47. DOI:10.1039/c1sm06031g.

Rubinstein M, Colby RH. Polymer physics. New York: Oxford University Press; 2003. 442 p.




DOI: http://dx.doi.org/10.15826/chimtech/2017.4.2.028

Copyright (c) 2017 F. Scharf, E. Mikhnevich, A. Safronov

© Chimica Techno Acta, 2014-2019
ISSN 2411-1414 (Online), ISSN 2409-5613 (Print)

ROAD logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo