Study and optimization of the synthesis routine of the single phase YBaCo2O6-δ double perovskite
Abstract
Keywords
Full Text:
PDFReferences
Haoshan H, Lu Z, Yingfan W, Shijiang L, Xing H. Thermogravimetric study on oxygen adsorption/desorption properties of double perovskite structure oxides REBaCo2O5+δ (RE = Pr, Gd, Y). J Rare Earths. 2007;25:275–81. doi:10.1016/S1002-0721(07)60421-9
Hao H, Chen B, Zhao L, Hu X. Oxygen removal from nitrogen using YBaCo2O5+δ adsorbent. Korean J Chem Eng. 2011;28(2):563-66. doi:10.1007/s11814-010-0354-9
Xue J, Shen Y, He T. Double-perovskites YBaCo2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources. 2011;196(8):3729-35. doi:10.1016/j.jpowsour.2010.12.071
Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics. 2014;262:354–8. doi:10.1016/j.ssi.2013.11.009
Pelosato R, Donazzi A, Dotelli G, Cinzia C, Sora IN, Mariani MP. Electrical characterization of co-precipitated LaBaCo2O5+δ and YBaCo2O5+δ oxides. J Europ Ceram Soc. 2014;34:4257-72. doi:10.1016/j.jeurceramsoc.2014.07.005
Zhang Y, Yu B, Lü S, Meng X, Zhao X, Ji Y. Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochim Acta. 2014;134:107-15. doi:10.1016/j.electacta.2014.04.126
Yi L.YBaCo2O5+δ as a new cathode material for zirconia-based solid oxide fuel cells. J Alloys Compd. 2009;477:860-2. doi:10.1016/j.jallcom.2008.11.010
Kim JH, Manthiram A. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc. 2008;155(4):B385-90. doi:10.1149/1.2839028
Meng F, Xia T, Wang J, Shi Z, Lian J, Zhao H, Bassat JM, Grenier JC. Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy. 2014;39:4531-43. doi:10.1016/j.ijhydene.2014.01.008
Zhang X, Hao H, He Q, Hu X. High-temperature electronic transport properties of Fe-doped YBaCo2O5+δ. Phys B. 2007;39(1):118-21. doi:10.1016/j.physb.2007.02.027
Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 2008;56(17):4876-89. doi:10.1016/j.actamat.2008.06.004
Kim JH, Kim YN, Bi Z, Manthiram A, Paranthaman MP, Huq A. Overcoming phase instability of RBaCo2O5+δ (R= Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells. Solid State Ionics. 2013;253:81-7. doi:10.1016/j.ssi.2013.09.001
Sednev AL, Zuev AYu, Tsvetkov DS. Oxygen content and thermodynamic stability of YBaCo2O6-δ double perovskite. Adv Mater Sci Eng. Forthcoming 2017.
Xuening J, Hongxia X, Qian W, Lei J, Xiangnan L, Qiuli X, Yuchao S, Qingyu Z. Fabrication of GdBaCo2O5+d cathode using electrospun composite nanofibers and its improved electrochemical performance. J Alloys Compd. 2013;557:184-9. doi:10.1016/j.jallcom.2013.01.015
Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR. Synthesis of crystalline YCoO3 perovskite via sol–gel method. Mater Lett. 2004;58(5):716-8. doi:10.1016/j.matlet.2003.07.001
Urusova AS, Cherepanov VA, Aksenova TV, Gavrilova LY, Kiselev EA. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba–Co–O system. J Solid State Chem. 2013;202:207-14. doi:10.1016/j.jssc.2013.03.037
Knizek K, Jirak Z, Hejtmanek J, Veverka M, Marysko M, Hauback BC, Fjellvag H. Structure and physical properties of YCoO3–δ at temperatures up to 1000 K. Phys Rev B: Condens Matter. 2006;73:214443. doi:10.1103/PhysRevB.73.214443
Balamurugan S, Takayama-Muromachi E. Structural and magnetic properties of high-pressure/high-temperature synthesized (Sr1–xRx)CoO3 (R=Y and Ho) perovskites. J Solid State Chem. 2006;179(7):2231-6. doi:10.1016/j.jssc.2006.04.028
Felser C, Yamaura K, Cava RJ. The electronic structure of hexagonal BaCoO3. J Solid State Chem. 1999;146(2):411-7. doi:10.1006/jssc.1999.8382
Botta PM, Pardo V, de la Calle C, Baldomir D, Alonso JA, Rivas J. Ferromagnetic clusters in polycrystalline BaCoO3. J Magn Magn Mater. 2007;316(2):e670-3. doi:10.1016/j.jmmm.2007.03.058
Jacobson AJ, Hutchinson JL. An investigation of the structure of 12H BaCoO2.6 by electron microscopy and powder neutron diffraction. J Solid State Chem. 1980;35(3):334-40. doi:10.1016/0022-4596(80)90530-7
Demazeau G, Pouchard M, Hagenmuller P. Sur de nouveaux composés oxygénés du cobalt+ III dérivés de la perovskite. J Solid State Chem. 1974;9(3):202-9. doi:10.1016/0022-4596(74)90075-9
Feng G, Xue Y, Shen H, Feng S, Li L, Zhou J, Yang H, Xu D. Sol–gel synthesis, solid sintering, and thermal stability of single-phase YCoO3. Phys Status Solidi A. 2012;209(7):1219-24. doi:10.1002/pssa.201127710
Kropanev AYu, Petrov AN. Termicheskie svoystva cobal’titov redkozemel’nykh elementov sostava RCoO3 [Termal properties of cobaltites of rare earth elements RCoO3]. Zhurnal Fizicheskoy Khimii. 1984;58(1):50-3. Russian.
Kropanev AYu, Petrov AN. Termicheskaya ustoychivost’ cobal’titov LnCoO3 na vozduhe (Ln – Sm, Eu, Gs, Tb, Dy, Ho) [termal stability of cobaltites LnCoO3 in air]. Izv AN SSSR. Neorganicheskie materialy. 1983;19(12):2027-30. Russian.
Kozlenko DP, Jirák Z, Golosova NO, Savenko BN. Magnetic ground state and the spin-state transitions in YBaCo2O5.5. Eur Phys J B. 2009;70(3):327-34. doi:10.1140/epjb/e2009-00228-x
Aurelio G, Curiale J, Sánchez RD, Cuello GJ. Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by calcium addition in the Y(Ba1−xCax)Co2O5.5 layered cobaltites using neutron diffraction. Phys Rev B. 2007;76(21):214417. doi:10.1103/PhysRevB.76.214417
DOI: https://doi.org/10.15826/chimtech/2017.4.3.03
Copyright (c) 2017 A. L. Sednev, D. S. Tsvetkov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International