Cover Image

Synthesis, structure and electrical properties of Mg-, Ni-codoped bismuth niobates

M. S. Koroleva, I. V. Piir, E. I. Istomina

Abstract


Mg-, Ni-codoped bismuth niobates Bi1.6Mg0.8-xNixNb1.6O7-δ (x = 0; 0.2; 0.4; 0.6; 0.8) were obtained by conventional solid-state reaction method. It was shown that the Mg atoms are distributed at the Nb sites while the Ni atoms are distributed over the Bi- and the Nb-sites, according to the results of comparison of pycnometric and X-ray density of the Bi1.6Mg0.4Ni0.4Nb1.6O7-δ pyrochlore. In this case, about 15–20% of the vacancies are formed at the Bi sites. The obtained compounds are stable up to their melting point based on the DSC analysis data. Real dielectric permittivity ε' of the Bi1.6Mg0.8-xNixNb1.6O7-δ samples decreases from 80 to 65 with the temperature decrease from 25 to 700 °C and practically does not depend on frequency in the range of 1–1000 kHz. Oxides Bi1.6Mg0.8-xNixNb1.6O7-δ behave like insulators up to 280 °C, their conductivity increases with temperature (Ea,dc ≈ 1.3 eV, dc) and with the Ni content at a given temperature.

Keywords


pyrochlore; Bi1.6Mg0.8-xNixNb1.6O7-δ; dopant distribution; dielectric behavior; electrical conductivity

Full Text:

PDF

References


Nino JC, Lanagan MT, Randall CA. Dielectric Relaxation in Bi2O3–ZnO–Nb2O5 Cubic Pyrochlore. J Appl Phys. 2001;89(8):4512–6. doi:10.1063/1.1357468

Liu W, Wang H. Enhanced dielectric properties of Bi1.5ZnNb1.5O7 thick films via cold isostatic pressing. J Electroceram. 2012;29:183–6. doi:10.1007/s10832-012-9758-8

Ren W, Trolier-Mckinstry S, Randall CA, Shrout TR. Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications. J Appl Phys. 2001;89(1):767–74. doi:10.1063/1.1328408

Levin I, Amos TG, Nino JC, Vanderah TA, Randall CA, Lanagan MT. Structural Study of an Unusual Cubic Pyrochlore Bi1.5Zn0.92Nb1.5O6.92. J Solid State Chem. 2002:168:69–75. doi:10.1006/jssc.2002.9681

Jiang SW, Li YR, Li RG, Xiong ND, Tan LF, Liu XZ, Tao BW. Dielectric properties and tunability of cubic pyrochlore Bi1.5MgNb1.5O7 thin films. Appl Phys Lett. 2009;94:162908-1-162908-3. doi:10.1063/1.3126442

Xia W, Xue P, Wu H, Lu Y, Zhang Y, Zhou Sh, Zhu X. Dielectric properties and atomic-scale microstructural characterizations of cubic-pyrochlored ceramics in the system of Bi2O3-MgO-Nb2O5. J Alloys Compd. 2017;701:682-8. doi:10.1016/j.jallcom.2017.01.153

Gao L, Jiang Sh, Li R, Li B, Li Y. Structure and dielectric properties of sputtered bismuth magnesium niobate thin films. Thin Solid Films. 2012;520:6295-8. doi:10.1016/j.tsf.2012.06.035

Zhang Y, Zhu X, Zhou Sh, Zhu J, Liu Zh, Al-Kassab T. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol–gel method. J Nanopart Res. 2014;16:2208. doi:10.1007/s11051-013-2208-y

Tan PY, Tan KB, Khaw CC, Zainal Z, Chen SK, Chon MP. Phase equilibria and dielectric properties of Bi3+(5/2)xMg2-xNb3–(3/2)xO14-x cubic pyrochlores. Ceramics International. 2014;40:4237–46. doi:10.1016/j.ceramint.2013.08.087

Lufaso MW, Vanderah TA, Pazos IM, Levin I, Roth RS, Nino JC, Provenzano V, Schenck PK. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5. J Solid State Chem. 2006;179:3900–10. doi:10.1016/j.jssc.2006.08.036

Vanderah TA, Lufaso MW, Adler AU, Levin I, Nino JC, Provenzano V, Schenck PK. Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5. J Solid State Chem. 2006;179:3467-3477. doi: 10.1016/j.jssc.2006.07.014

Sirotinkin VP, Bush AA. Preparation and Dielectric Properties of Bi1.5MNb1.5O7 (M = Cu, Mg, Mn, Ni, Zn) Pyrochlore Oxides. Inorg Mater. 2003;39(9):974–7. doi:10.1023/A:1025517507623

Vanderah TA, Siegrist T, Lufaso MW, Yeager MC, Roth RS, Nino JC, Yates S. Phase formation and properties in the system Bi2O3: 2CoO1+x:Nb2O5. Eur J Inorg Chem. 2006;23:4908–14. doi:10.1002/ejic.200600661

Nguyen HB, Norẻn L, Liu Y, Withers RL, Wei X, Elcombe MM. The disordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi2O3–MIIO–Nb2O5 (M = Mg, Ni) systems. J Solid State Chem. 2007;180:2558–65. doi:10.1016/j.jssc.2007.07.003

Nguyen B, Liu Y, Withers RL. The local crystal chemistry and dielectric properties of the cubic pyrochlore phase in the Bi2O3–M2+O–Nb2O5 (M2+ – Ni2+ and Mg2+) systems. J Solid State Chem. 2007;180:549–57. doi:10.1016/j.jssc.2006.10.039

Li LX, Zhang S, Lv XS. Crystal chemistry and dielectric properties of (Bi1.5Zn0.4M0.1)(Nb1.5Zn0.5)O7 (M = Sr, Ca, Mn, Zn) pyrochlore oxides. J Mater Sci: Mater Electron. 2017;28(5):4388-95. doi:10.1007/s10854-016-6066-0

Shihua D, Yong P, Tianxiu S, Hongni W, Peng X, Lihua Y. Dielectric Properties of Ca Doping -BZN Ceramics. Ferroelectrics. 2015;487:161–7. doi:10.1080/00150193.2015.1071628

Luo W, Li L, Guo Q, Lv X. Crystal structure and dielectric properties of Mn-substituted Bi1.5Zn1.0Nb1.5O7 pyrochlore ceramics as temperature stable LTCC material. J Mater Sci: Mater Electron. 2017;28:5623–7. doi:10.1007/s10854-016-6232-4

Du H, Shi X, Cui Y. Defect structure and electrical conduction behavior of Bi-based pyrochlores. Solid State Commun. 2010;150:1213–6. doi:10.1016/j.ssc.2010.04.008

Osman RAM, West AR. Electrical characterization and equivalent circuit analysis of (Bi1.5Zn0.5)(Nb0.5Ti1.5)O7 Pyrochlore, a relaxor ceramic. J Appl Phys. 2011;109:074106-1-074106-8. doi:10.1063/1.3553883

Valant M, Davies PK. Crystal Chemistry and Dielectric Properties of Chemically Substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 Pyrochlores. J Am Ceram Soc. 2000;83(1):147–53. doi:10.1111/j.1151-2916.2000.tb01163.x

Du H, Yao X, Wang H. Dielectric properties of pyrochlore (Bi1.5Zn0.5)(Nb0.5M1.5)O7 (M = Ti, Sn, Zr, and Ce) dielectrics. Appl Phys Lett. 2006;88:212901-1-212901-3. doi:10.1063/1.2200480

Qasrawi AF, Mergen A. Structural, electrical and dielectric properties of Bi1.5Zn0.92Nb1.5−xTaxO6.92 pyrochlore ceramics. Ceramics International. 2012;38:581–7. doi:10.1016/j.ceramint.2011.07.046

Wang H, Zhang D, Wang X, Yao X. Effect of La2O3 Substitution on Structure and Dielectric Properties of Bi2O3–ZnO–Nb2O5-based Pyrochlore Ceramics. J Mater Res. 1999;14(2):546–8. doi:10.1557/JMR.1999.0078

Dasin NAM, Tan KB, Khaw CC, Zainal Z, Chen SK. Subsolidus solution and electrical properties of Sr-substituted bismuth magnesium niobate pyrochlores. Ceramics International. 2017;43:10183–91. doi:10.1016/j.ceramint.2017.05.043

Huang B, Liu Y, Lu Y, Gao H, Chen H. Structure and dielectric properties of Nd substituted Bi1.5MgNb1.5O7 ceramics. J Mater Sci: Mater Electron. 2013;24:2785–9. doi:10.1007/s10854-013-1171-9

Ning P-F, Li L-X, Xia W-S, Zhang X-Y. Low temperature crystallized voltage tunable Bi1.5CuxMg1-xNb1.5O7 thin films capable of integration with Au electrode. Ceramics International. 2012;38:5299–303. doi:10.1016/j.ceramint.2012.02.088

Koroleva MS, Piir IV, Sekushin NA. Mg-Ni and Mg-Cu containing bismuth niobates: synthesis, structure and electrical properties. In: Articles of the 21h International Conference Solid State Ionics; 2017 June 18-23; Padua, Italy. p. 357.

Koroleva MS, Piir IV, Sekushin NA, Istomina EI. Sintez i elektricheskie svoystva magniy-med'-, magniy-nikel'soderzhashchikh niobatov vismuta [Synthesis and electrical properties of magnesium-copper, magnesium-nickel-containing bismuth niobates]. In: Articles of the First International Conference on Intellect-intensive technologies in power engineering (physical chemistry and electrochemistry of molten and solid state electrolytes); 2017 Sep 18-22; Ekaterinburg, Russia. p. 363-365. Russian.

Withers RL, Welberry TR, Larsson A-K, Liu Y, Norén L, Rundlöf H, Brink FJ. Local crystal chemistry, induced strain and short range order in the cubic pyrochlore (Bi1.5− αZn0.5−β)(Zn0.5−γNb1.5−δ)O(7−1.5α−β−γ−2.5δ) (BZN). J Solid State Chem. 2004;177(1):231–44. doi:10.1016/j.jssc.2003.07.005

Piir IV, Koroleva MS, Ryabkov YuI, Pikalova EYu, Nekipelov SV, Sivkov VN, Vyalikh DV. Chemistry, structure and properties of bismuth copper titanate pyrochlores. Solid State Ionics. 2014;262:630–5. doi:10.1016/j.ssi.2013.08.041

Krasnov AG, Piir IV, Koroleva MS, Sekushin NA, Ryabkov YI, Piskaykina MM, Sadykov VA, Sadovskaya EM, Pelipenko VV, Eremeev NF. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6МxTi2O7−δ (М – Mg, Sc, Cu). Solid State Ionics. 2017;302:118–25. doi:10.1016/j.ssi.2016.12.019

Rodríguez-Carvajal J. Recent advances inmagnetic structure determination by neutron powder diffraction. Phys B Condens Matter. 1993;192:55–69. doi:10.1016/0921-4526(93)90108-I

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Allred AL, Rochow EG. A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem. 1958;5(4):264–8. doi:10.1016/0022-1902(58)80003-2

Singh J, Krupanidhi SB. Probing disorder in cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films. Solid State Commun. 2010;150:2257–61. doi:10.1016/j.ssc.2010.09.030

Tan PY, Tan KB, Khaw CC, Zainal Z, Chen SK, Chon MP. Structural and electrical properties of bismuth magnesium tantalate pyrochlores. Ceramics International. 2012;38(7):5401-9. doi:10.1016/j.ceramint.2012.03.050

Tan KB, Khaw CC, Lee CK, Zainal Z, Tan YP, Shaari H. High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore. Mater Sci Pol. 2009;27:947–59. Available from: http://www.materialsscience.pwr.wroc.pl/




DOI: https://doi.org/10.15826/chimtech/2017.4.4.04

Copyright (c) 2017 M. S. Koroleva, I. V. Piir, E. I. Istomina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice