Subsolidus phase equilibria of the CuO – SrO – ZnO pseudoternary system in air at 900 °C
Abstract
The subsolidus phase equilibria of the CuO – SrO – ZnO system were determined at 900 °C in air. The pseudoternary section does not contain ternary oxide phases but is made of 5 three-phase regions and 2 narrow two-phase regions linked to a Sr14Cu24-xZnxO41-y solid solution. The maximum solubility of Zn in this phase is limited to x ≈ 0.1, but this low doping level results in a significant decrease of the electrical resistivity by about one order of magnitude compared to the undoped compound. The other binary oxide phases SrZnO2,Sr2CuO3, and SrCuO2 do not form solid solutions extending into the ternary system. SrZnO2 was found to decompose upon contact with ambient air.
Keywords
Full Text:
PDFReferences
Bednorz JG, Muller KA. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik. 1986;B64:189–93. doi:10.1007/BF01303701
Grivel JC. Subsolidus phase relations of the CaO – REOx – CuO systems (RE = Eu, Tb, Dy, Ho, Er, Lu and Sc) at 900°C in air. J Phase Equilib Diffus. 2016;37:601–10. doi:10.1007/s11669-016-0489-4
Zhuravlev VD, Velikodnyi YA, Kristallov LV. Study of phase-equilibria in the CuO – SrO – V2O5 system. Zh Neorg Khim. 1987;32:3060–3.
Drozdova NM, Sirotinkin VP, Evdokimov AA. Phase correlations in subsolidus domain of SrO – CuO – Nb2O5 system. Zh Neorg Khim. 1991;36:1588–9.
Sirotinkin VP, Drozdova NM. Phase relations in SrO – CuO – Nb2O5 system in the spectrum with high strontium oxide content. Zh Neorg Khim. 1993;38:1912–3.
Yang LT, Liang JK, Song GB, Chang H, Rao GH. Compounds and phase relations in the SrO – Fe2O3 – CuO, SrO – Fe2O3 – Gd2O3 and Gd2O3 – Fe2O3 – CuO ternary systems. J Alloys Compd. 2003;353:301–6. doi:10.1016/S0925-8388(02)01301-4
Lee SY, Kim HE, Yoo SI. Subsolidus phase relations in the SrO – CuO – TiO2 ternary system at 950°C in air. J Alloys Compd. 2013:556:210–3. doi:10.1016/j.jallcom.2012.11.193
Grivel JC. Subsolidus phase relations of the SrO – MO2 – CuO systems ( M = Ti, Zr and Hf) at 900 °C in air. J Alloys Compd. 2008;464:457–60. doi:10.1016/j.jallcom.2007.10.013
Grivel JC. Subsolidus phase relations of the SrO – Ta2O5 – CuO system at 900°C in air. J Alloys Compd. 2009;486:293–8. doi:10.1016/j.jallcom.2009.06.133
Grivel JC. Subsolidus phase relations of the SrO – WO3 – CuO system at 800°C in air. J Alloys Compd. 2012;513:304–9. doi:10.1016/j.jallcom.2011.09.104
Grivel JC. Subsolidus phase relations of the CoOx – CuO – SrO system. J Phase Equilib Diffus. 2017;38:646–55. doi:10.1007/s11669-017-0581-4
Srivastava A, Kumar N, Misra KP, Khare S. Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron Mater Lett. 2014;10:703–11. doi:10.1007/s13391-014-3131-9
Vijaran TA, Chandramohan R, Varanarasu S, Thirumalai J, Subramanian SP. J Mater Sci. 2008;43:1776–82. doi:10.1007/s10853-007-2404-1
Harish S, Sabarinathan M, Archana J, Navaneethan M, Nisha KD, Ponnusamy S, Gupta V, Muthamizhchelvan C, Aswal DK, Ikeda H, Hayakawa Y. Synthesis of ZnO/SrO nanocomposites for enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci. 2017;418:147–55. doi:10.1016/j.apsusc.2017.01.164
Das T, Das BK, Parashar K, Kumar R, Choudhary HK, Anupama AV, Sahoo B, Sahoo PK, Parashar SKS. Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. J Mater Sci: Mater Electron. 2017;28:13587–95. doi:10.1007/s10854-017-7198-6
Güntürkün K, Toplan Ö. Densification and grain growth of SrO-doped ZnO. Ceramics – Silikáty. 2006;50:225–31.
Sharma PS, Dutta RK, Pandey AC, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods. J Magn Magn Mater. 2009;321:4001–5. doi:10.1006/j.jmmm.2009.07.066
Liu HL, Yang JH, Zhang YJ, Wang YX, Wei MB, Wang DD, Zhao LY, Lang JH, Gao M. Ferromagnetism in Cu-doped ZnO nanoparticles at room temperature. J Mater Sci: Mater Electron. 2009;20:628–31. doi:10.1007/s10854-008-9776-0
Harish S, Archana J, Sabarinathan M, Navaneethan M, Nisha KD, Ponnusamy S, Muthamizhchelvan C, Ikeda H, Aswal DK, Hayakawa Y. Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutants. Appl Surf Sci. 2017;418:103–12. doi:10.1016/j.apsusc.2016.12.082
Geng LL, Han CH, Zhang D. Catalysis investigation of PET depolymerization by ZnSrO2 under microwave irradiation. Adv Mater. 2011;239–42:3194–7. doi:10.4028/www.scientific.net/AMR.239-242.3194
Yang HK, Lee JH, Hong WT, Jang HI, Moon BK, Jeong JH and Je JY. Preparation and photoluminescence properties of nano-sized SrZnO2:Sm3+ phosphor powders obtained by high-energy ball milling. Ceram Int. 2015;41:991–4. doi:10.1016/j.ceramint.2014.09.019
Manavbasi A, LaCombe JC. A new blue-emitting phosphor, SrZnO2:Pb2+, synthesized by the adipic templated gel route. J Lumin. 2007;128:129–34. doi:10.1016/j.jlumin.2007.06.002
Maeda H, Tanaka Y, Fukutomi M, Asano T, Togano K, Kumakura H, Uehara M, Ikeda S, Ogawa K, Horiuchi S, Matsui Y. New high-Tc superconductors without rare-earth element. Physica C. 1988;153–5:602–7. doi:10.1016/0921-4534(88)90727-7
Sheng ZZ, Hermann AM, Bulk superconductivity at 120K in the Tl-Ca/Ba-Cu-O system. Nature. 1988;332:138–9. doi:10.1038/332138a0
McMurdie H, Morris M, Evans E, Paretzkin B, Wong-Ng W, Ettlinger L, Hubbard C. JCPDS reference pattern 36-1451.
Modwi A, Lemine OM, Alshammari M, Houas A. Ferromagnetism at room temperature in Zn0.95Cu0.05O nanoparticles synthesized by sol-gel method. Mater Lett. 2017;194:98–101. doi:10.1016/j.matlet.2017.02.029
Garces NY, Wang L, Bai L, Giles NC, Halliburton LE, Cantwell G. Role of copper in the green luminescence from ZnO crystals. Appl Phys Lett. 2002;81:622–4. doi:10.1063/1.1494125
Borzi RA, Stewart SJ, Punte G, Mercader RC, Zysler RD, Tovar M, History-dependent magnetic properties in pure and Zn-doped cupric oxide. Solid State Commun. 2001;117:311–4. doi:10.1016/S0038-1098(00)00467-1
Prabhakaran D, Boothroyd AT. Single crystal growth of Zn-doped CuO by the floating-zone method. J Cryst Growth. 2003;250:77–82. doi:10.1016/S0022-0248(02)02230-3
Buchmeier W, Lutz HD. Crystal-structures of Sr(OH)2·H2O, Ba(OH)2·H2O (O-RH and MON) and Ba(OH)2.3·H2O. Z Anorg Allg Chem. 1986;538:131–42. doi:10.1002/zaac.19865380713
Liang JK, Zhan C, Fei W, Xie SS. Phase-diagram of SrO – CaO – CuO ternary-system. Solid State Commun. 1990;75:247–52. doi:10.1016/0038-1098(90)90279-K
Kosmynin AS, Slobodin BV, Balashov VL, Garkushin IK, Fotiev AA, Trunin AS. Phase-equilibria in the CaO-SrO-CuO system (≥ 70 mol % CuO). Inorg Mater. 1995;7:867–70.
Hwang NM, Roth RS, Rawn CJ. Phase-equilibria in the systems SrO-CuO and SrO-1/2Bi2O3. J Am Ceram Soc. 1990;73:2531–3. doi:10.1111/j.1151-2916.1990.tb07628.x
Suzuki RO, Bohac P, Gauckler LJ. Thermodynamics and phase-equilibria in the Sr-Cu-O system. J Am Ceram Soc. 1992;75:2833–42. doi:10.1111/j.1151-2916.1992.tb05513.x
Nevřiva M, Kraus H. Study of phase-equilibria in the partially open Sr-Cu-(O) system. Physica C. 1994;235–40:325–6. doi:10.1016/0921-4534(94)91386-2
Alcock CB, Li BZ. Thermodynamic study of the Cu-Sr-O system. J Am Ceram Soc. 1990;73:1176–80. doi:10.1111/j.1151-2916.1990.tb05176.x
De Leeuw DM, Mutsaers CAHA, Geelen GPJ, Smoorenburg HCA, Langereis C. Compounds and phase compatibilities in the system Y2O3 – (BaO) – SrO – CuO at 950 °C. Physica C. 1988;152:508–12. doi:10.1016/0921-4534(88)90061-5
Wu F, Xie S, Chen Z, Ling JK. Subsolidus phase-relations of the Y2O3 – SrO – CuO system. J Mater Sci. 1992;27:3082–4. doi:10.1007/BF01154122
Roth RS, Rawn CJ, Whitler JD, Chiang CK, Wong-Ng W. Phase-equilibria and crystal-chemistry in the quaternary system Ba-Sr-Y-Cu-O in air. J Am Ceram Soc. 1989;72:395–9. doi:10.1111/j.1151-2916.1989.tb06142.x
De Leeuw DM, Mutsaers CAHA, Geelen GPJ, Langereis C. Compounds and phase compatibilities in the system La2O3 – SrO – CuO at 950 °C. J Solid State Chem. 1989;80:276–85. doi:10.1016/0022-4596(89)90090-X
Chen X, Liang JK, Wang C, Rao GH, Xing XR, Song ZH, Qiao ZY. The Nd2O3 – SrO – CuO system – compounds and phase-relations. J Alloys Compd. 1994;205:101–6. doi:10.1016/0925-8388(94)90773-0
Han CQ, Chen XL, Liang JK, Liu QL, Rao GH. The ternary system Sm2O3 – SrO – CuO: compounds and phase relations. J Alloys Compd. 200;314:301–4. doi:10.1016/S0925-8388(00)01255-X
Han CQ, Chen XL, Liang JK, Liu QL, Rao GH. The ternary system Eu2O3 – SrO – CuO: compounds and phase relations. J Solid State Chem. 2001;156:247–50. doi: 10.1006/jssc.2000.8997
Han CQ, Gao Y, Chen XL, Liang JK, Rao H. The ternary system Gd2O3 – SrO – CuO: compounds and phase relations. J Alloys Compd. 2001;321:54–9. doi:10.1016/S0925-8388(01)00873-8
Wong-Ng W, Huang Q, Levin I, Kaduk JA, Dillingham J, Haugan T, Suh J, Cook LP. Crystal chemistry and phase equilibria of selected SrO – R2O3 – CuOx and related systems; R = lanthanides and yttrium. Int J Inorg Mater. 2001;3:1283–90. doi:10.1016/S1466-6049(01)00133-7
Wong-Ng W, Dillingham J, Cook LP. Phase relations of the SrO – Ho2O3 – CuOx system. J Solid State Chem. 2000;149:333–7. doi:10.1006/jssc.1999.8536
Grivel JC, Andersen NH. Subsolidus phase relations of the SrO – Er2O3 – CuO system. J Alloys Compd. 2005;389:186–9. doi:10.1016/j.jallcom.2004.05.086
Han CQ, Chen XL, Liang JK, Liu QL, Chen Y, Rao GH. The ternary system Tm2O3 – SrO – CuO: compounds and phase relations. J Alloys Compd. 2000;309:95–9. doi:10.1016/S0925-8388(00)01041-0
Dillingham J, Wong-Ng W, Levin I. Phase equilibria of the SrO – Yb2O3 – CuOx system in air. Int J Inorg Mater. 2001;3:569–73. doi:10.1016/S1466-6049(01)00015-0
Grivel JC, Andersen NH. Subsolidus phase relations of the SrO – RE2O3 – CuO systems (RE = Tm, Lu and Sc). J Alloys Compd. 2005;391:292–5. doi:10.1016/j.jallcom.2004.08.077
Grivel JC, Andersen NH. Subsolidus phase relations of the SrO – REOx – CuO systems (RE = Ce, Pr and Tb). J Alloys Compd. 2007;436:261–5. doi:10.1016/j.jallcom.2006.07.020
DOI: https://doi.org/10.15826/chimtech.2018.5.1.01
Copyright (c) 2017 Jean-Claude Grivel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice