Cover Image

Oxygen content and defect structure of the perovskite La0.5Ba0.5CoO3–δ

D. A. Malyshkin, A. Yu. Novikov, D. S. Tsvetkov


Perovskite-type complex oxide La0.5Ba0.5CoO3–δ, promising cathode material for solid oxide fuel cells and precursor for synthesis of double perovskite LaBaCo2O6–δ, was prepared as a single-phase material. Its oxygen content was measured by two independent techniques in the temperature range 1000–1100 °C and at oxygen partial pressures corresponding to the stability field of cubic phase. The defect chemistry of this material was studied using the measured δ=f(pO2,T) dependences. The defect structure model based on the localized nature of the electronic defects was proposed and successfully verified.


oxygen nonstoichiometry; perovskite; defect structure; coulometric titration

Full Text:



Kobussen AGC, van Buren FR, Van den Belt TGM, Van Wees HJA. Oxygen evolution on LaCoO3-type electrodes. J Electroanal Chem Interfacial Electrochem. 1979;96(1):123–5. doi:10.1016/S0022-0728(79)80309-5

Patil SB, Keer HV, Chakrabarty DK. Structural, electrical, and magnetic properties in the system BaxLa1–xCoO3. Phys Status Solidi A. 1979;52(2):681–6. doi:10.1002/pssa.2210520240

Nakajima T, Ichihara M, Ueda Y. New A-site ordered perovskite cobaltite LaBaCo2O6: synthesis, structure, physical property and cation order–disorder effect. J Phys Soc Japan. 2005;74(5):1572–7. doi:10.1143/JPSJ.74.1572

Kundu AK, Rautama EL, Boullay P, Caignaert V, Pralong V, Raveau B. Spin-locking effect in the nanoscale ordered perovskite cobaltite LaBaCo2O6. Phys Rev B. 2007;76(18):184432-1–4. doi:10.1103/PhysRevB.76.184432

Rautama E-L, Boullay P, Kundu AK, Caignaert V, Pralong V, Karppinen M, et al. Cationic ordering and microstructural effects in the ferromagnetic perovskite La0.5Ba0.5CoO3: impact upon magnetotransport properties. Chem Mater. 2008;20(8):2742–50. doi:10.1021/cm703314p

Kim J-H, Manthiram A. LnBaCo2O5+δ oxides as cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. J Electrochem Soc. 2008;155(4):B385–90. doi:10.1149/1.2839028

Kim J-H, Mogni L, Prado F, Caneiro A, Alonso JA, Manthiram A. High temperature crystal chemistry and oxygen permeation properties of the mixed ionic–electronic conductors LnBaCo2O5+δ ( Ln = Lanthanide ). J Electrochem Soc. 2009;156(12):B1376–82. doi:10.1149/1.3231501

Chen T, Zhao H, Xu N, Li Y, Lu X, Ding W, et al. Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2−δ–LaBaCo2O5+δ dual-phase composite membrane. J Membrane Sci. 2011;370(1):158–65. doi:10.1016/j.memsci.2011.01.007

Troyanchuk IO, Karpinsky DV, Bushinsky MV, Sikolenko V, Efimov V, Cervellino A. The low-temperature macroscopic phase separation in La0.5Ba0.5CoO3−δ cobaltite. JETP Letters. 2011;93(3):139–43. doi:10.1134/s0021364011030167

Pang S, Jiang X, Li X, Su Z, Xu H, Xu Q, et al. Characterization of cation-ordered perovskite oxide LaBaCo2O5+δ as cathode of intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energ. 2012;37(8):6836–43. doi:10.1016/j.ijhydene.2012.01.056

Pang SL, Jiang XN, Li XN, Wang Q, Zhang QY. Structural stability and high-temperature electrical properties of cation-ordered/disordered perovskite LaBaCoO. Mater Chem Phys. 2012;131(3):642–6. doi:10.1016/j.matchemphys.2011.10.029

Garcés D, Setevich CF, Caneiro A, Cuello GJ, Mogni L. Effect of cationic order-disorder on the transport properties of LaBaCo2O6-δ and La0.5Ba0.5CoO3-δ perovskites. J Appl Crystallogr. 2014;47(1):325–34. doi:10.1107/S1600576713031233

Garcés D, Mogni LV. The soft chemical route improving IT-SOFC cathode performance: The lanthanum barium cobaltite case. ECS Trans. 2013;58(2):191–8. doi:10.1149/05802.0191ecst

Bernuy-Lopez C, Høydalsvik K, Einarsrud M-A, Grande T. Effect of A-Site cation ordering on chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite. Materials. 2016;9(3):154-1–18. doi:10.3390/ma9030154

Garcés D, Soldati AL, Troiani H, Montenegro-Hernández A, Caneiro A, Mogni LV. La/Ba-based cobaltites as IT-SOFC cathodes: a discussion about the effect of crystal structure and microstructure on the O2-reduction reaction. Electrochim Acta. 2016;215:637–46. doi:10.1016/j.electacta.2016.08.132

Setevich C, Prado F, Caneiro A. Study of the electrode polarization resistance of cobaltites with high Ba content as cathode for IT-SOFC. J Electrochem Soc. 2017;164(7):F759–67. doi:10.1149/2.0681707jes

Stingaciu M. Synthesis, crystal growth and investigation of layered cobaltites type RBaCo2O5+δ. Braunschweig: Braunschweig Univ. of Technology; 2009. 114 p.

Zhang C, He H, Wang N, Chen H, Kong D. Visible-light sensitive La1−xBaxCoO3 photocatalyst for malachite green degradation. Ceram Int. 2013;39(4):3685–9. doi:10.1016/j.ceramint.2012.10.200

Chen T, Zhao H, Xie Z, Xu N, Lu Y. Oxygen permeability of Ce0.8Sm0.2O2−δ–LnBaCo2O5+δ (Ln=La, Nd, Sm, and Y) dual-phase ceramic membranes. Ionics. 2015;21(6):1683–92. doi:10.1007/s11581-014-1327-5

Rautama EL, Caignaert V, Boullay P, Kundu AK, Pralong V, Karppinen M, et al. New member of the «112» family, LaBaCo2O5.5: synthesis, structure, and magnetism. Chem Mater. 2009;21(1):102–9. doi:10.1021/cm8021775

Seddon J, Suard E, Hayward MA. Topotactic reduction of YBaCo2O5 and LaBaCo2O5: square-planar Co(I) in an Extended Oxide. J Am Chem Soc. 2010;132(8):2802–10. doi:10.1021/ja910103d

Hu Y, Lei J, He J, Li Y, Wang Z, Wang Y, et al. Ferromagnetic and photocatalytic properties of layered perovskite LaBaCo2O6 nanostructures. J Nanosci Nanotechnol. 2016;16(1):930–3. doi:10.1166/jnn.2016.10808

Malyshkin DA, Novikov AY, Sereda VV, Ivanov IL, Tsvetkov DS, Zuev AY. In situ and ex situ study of cubic La0.5Ba0.5CoO3–δ to double perovskite LaBaCo2O6–δ transition and formation of domain textured phases with fast oxygen exchange capability. Forthcoming.

Bernuy-Lopez C, Rioja-Monllor L, Nakamura T, Ricote S, O’Hayre R, Amezawa K, et al. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes. Materials. 2018;11(2):196. doi:10.3390/ma11020196

Zuev AY, Tsvetkov DS. Conventional methods for measurements of chemo-mechanical coupling. In: Bishop SR, Perry N, Marrocchelli D, Sheldon B, editors. Electro-chemo-mechanics of solids: Springer International Publishing; 2017. p. 5–35. doi:10.1007/978-3-319-51407-9

Suard E, Fauth F, Caignaert V. Rhombohedral distortion in the new disordered LaBaCo2O6 perovskite. Phys B Condensed Matter. 2000;276–278:254–5. doi:10.1016/S0921-4526(99)01437-4

Zuev AY, Petrov AN, Vylkov AI, Tsvetkov DS. Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites. J Mater Sci. 2007;42(6):1901–8. doi:10.1007/s10853-006-0345-8

Kofstad P. Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. New York: Wiley-Interscience; 1972. 382 p.

Lee Y-L, Morgan D. Ab initio and empirical defect modeling of LaMnO3+δ for solid oxide fuel cell cathodes. Phys Chem Chem Phys. 2012;14(1):290–302. doi:10.1039/C1CP22380A


Copyright (c) 2018 D. A. Malyshkin, A. Yu. Novikov, D. S. Tsvetkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice