Cover Image

Synthesis, crystal structure and electrophysical properties of triple molybdates containing silver, gallium and divalent metals

Irina Yu. Kotova, Aleksandra A. Savina, Alena I. Vandysheva, Dmitry A. Belov, Sergey Yu. Stefanovich

Abstract


A possibility of the triple molybdates formation with both NASICON-like and NaMg3In(MoO4)5 structures in the Ag2MoO4AMoO4–Ga2(MoO4)3 (A = Mn, Co, Zn, Ni) systems was studied by powder X-ray diffraction analysis. It was established that NASICON-like phases Ag1−xA1−xGa1+x(MoO4)3 are not formed. The triple molybdates AgA3Ga(MoO4)5 (A = Mn, Co, Zn) isostructural to triclinic NaMg3In(MoO4)5 (sp. gr. P`1, Z = 2) were synthesized and characterized. The structure of the obtained compounds was refined for AgZn3Ga(MoO4)5  according to the powder data by the Rietveld method. The structure consists of MoO4 tetrahedra, couples of edge-shared M(1)O6 octahedra, and trimers of edge-shared M(2)O6-, M(3)O6- and M(4)O6 octahedra, which are linked by the common vertices to form a 3D framework. High-temperature conductivity measurements revealed that the conductivity of AgMn3Ga(MoO4)5 at 500 °С reaches 10-2 S/cm, which is close to one of the known NASICON-type ionic conductors.

Keywords


triple molybdates; silver; gallium; solid-state synthesis; powder X-ray diffraction; Rietveld refinement; ionic conductivity

Full Text:

PDF

References


Kotova IYu. Phase formation in the Ag2MoO4–CoMoO4–Al2(MoO4)3 system. Russ J Inorg Chem. 2014;59:844–8. doi:10.7868/S0044457X14080133

Kotova IYu, Korsun VP. Phase in the Ag2MoO4–MgMoO4–Al2(MoO4)3. Russ J Inorg Chem. 2010;55:955–8. doi: 10.1134/S0036023610060203

Kotova IYu, Korsun VP. Phase formation in the system involving silver, magnesium, and indium molybdates, Russ J Inorg Chem 2010;55:1965–9. doi: 10.1134/S0036023610120247

Kotova IYu, Belov DA, Stefanovich SYu. Ag1–xMg1–xR1+x(MoO4)3 Ag+-conducting NASICON-like phases, where R = Al or Sc and 0 ≤ x ≤ 0.5. Russ J Inorg Chem 2011;56:1189−93. doi: 10.1134/S0036023611080122

Bouzidi C, Frigui W, Zid MF. Synthèse et structure crystalline d'un matériau noir AgMnII3(MnIII0.26Al0.74)(MoO4)5. Acta Cryst. 2015;E71:299–304. doi: 10.1107/S2056989015003345

Nasri R, Chérif SF, Zid MF. Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5. Acta Cryst. 2015; E71:388−91. doi: 10.1107/s2056989015005290

Kotova IYu, Solodovnikov SF, Solodovnikova ZA, Belov DA, Stefanovich SYu, Savina AA, Khaikina EG. New series of triple molybdates AgA3R(MoO4)5 (A = Mg, R = Cr, Fe; A = Mn, R = Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices. J Solid State Chem. 2016;238:121–8. doi: 10.1016/j.jssc.2016.03.003

Balsanova LV. Synthesis of crystals of silver containing oxide phases based on molybdenum, study of their structure and properties. Vestnik VSGUTU. 2015;5:63−9.

Kotova IYu, Savina AA, Khaikina EG. Crystal structure of new triple molybdate AgMg3Ga(MoO4)5 from Rietveld refinement. Powder Diffraction. 2017;32(4):255–60. doi: 10.1017/S0885715617000811

Yanushkevich TM, Zhukovsky VM, Ustyantsev VM. Fazovaya diagramma sistemy NiO‒МоОз. [Phase diagram of the system NiO‒МоОз]. Russ J Inorg Chem. 1974;19(7):1932–6.

Zhukovsky VM, Tkachenko EV. Fazovye ravnovesiya v molibdatnykh sistemakh. [Phase equilibria in molybdate systems]. Zbornik nauchnykh trudov. “Fizicheskaya khimiya okislov” Moscow: Nauka; 1981.106–15. Russian

Reichelt W. Weber T, Soehnel T. at al. Electronic structure and luminescence mechanisms in ZnMoO4 crystals. J Phys: Condes Mater. 2011;23:244‒59.

Tsyrenova GD, Bazarova JG, Mokhosoev MV. Phase equilibria in systems МеО‒МоО3 (Me ‒ Mg, Мп, Zn). Russ J Inorg Chem. 1986;31(12):3120–3.

Rajaram P, Viswanathan B, Aravamudan G. Studies on the formation of manganese molybdates. Thermochim acta. 1973;7(2):123–9.

Kohlmuller R, Faurie J.-P. Etude des systemes MoO3–Ag2MoO4 et MoO3–MO (M – Cu, Zn, Cd). Bull Soc chim. France. 1968;11:4379–82.

Larson AC, Von Dreele RB. General Structure Analysis System (GSAS) (Report LAUR 86-748). 2004. Los Alamos, New Mexico: Los Alamos National Laboratory.

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in dalides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Gates Stacy D, Julie A, Lind C. Gates Non-hydrolytic sol-gel synthesis, properties, and high-pressure behavior of gallium molybdate. J Mater Chem. 2006;16:4214–9. doi:10.1039/B608864C

Perepelitsa AP, Golub AM, Badayev YuB, Shapoval VN. Double molybdates of aluminum, gallium, indium, chromium, iron and bismuth with monovalent silver and thallium. Russ J Inorg Chem. 1977;22(4):994–7.

Klevtsova RF, Vasiliev AD, Kozhevnikova NM, Glinskaya LA, Kruglik AI, Kotova IYu. Synthesis and crystal structural study of ternary molybdate NaMg3In(MoO4)5. J Struct Chem. 1994;34:784−8.

Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2:65–71.




DOI: https://doi.org/10.15826/chimtech.2018.5.3.02

Copyright (c) 2018 Irina Kotova, Aleksandra Savina, Alena Vandysheva, Dmitry Belov, Sergey Stefanovich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice