Cover Image

Hopping conductivity in a system with ZnS crystal lattice by non-constant force field molecular dynamics

Anton A. Raskovalov

Abstract


In the paper non-constant force field molecular dynamics was used to study conductivity behavior on ZnS crystal lattice. The considered conductivity provided by electron hopping between localization centers placed randomly according to ZnS geometry. It was shown that the conductivity behavior depends on the maximal hopping distance. For the small distances the conductivity passes through the maximum around equimolar concentrations of electron donors and acceptors. Increasing in the maximal hopping distance leads to increasing in conductivity values and change shape of its concentration dependence.

Keywords


molecular dynamics; non-constant force field; polaron hopping; ZnS lattice

Full Text:

PDF

References


Kirkpatrick S. Percolation and Conduction. Rev Mod Phys. 1973; 45(4):574-88. doi: 10.1103/RevModPhys.45.574

Kurkijarvi J. Conductivity in random systems. II. Finite-size-system percolation. Phys Rev B. 1974; 9(15):770-4. doi: 10.1103/PhysRevB.9.770

Shklovskii BI, Éfros AL. Percolation theory and conductivity of strongly inhomogeneous media. Sov Phys Usp. 1975; 18(11):845–62. doi: 10.1070/PU1975v018n11ABEH005233

Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Clarendon Press; 1987. 385 p.

Frenkel D, Smit B. Understanding Molecular Simulation From Algorithms to Applications. San Diego, California: Academic Press; 1996. 638 p.

Raskovalov AA. A new extension of classical molecular dynamics: an electron transfer algorithm. J Comp Chem. 2017; 38(5):926-32. doi: 10.1002/jcc.24755

Non-constant force field molecular dynamics [Internet]. Available from: http://ncffmd.ru/set.php?lang=en (accessed 22.02.2017)

Raskovalov AA, Latypov AA. Simulation of Red-Ox Reactions in Liquid Media with Non-Constant Force Field Molecular Dynamics. Rasplavy [Melts]. 2018; 6. In press. doi: 10.1134/S0235010618060063

Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev. 1967; 159(1):98-103. doi: 10.1103/PhysRev.159.98

Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Explicit Reversible Integrators for Extended Systems Dynamics. Mol Phys. 1996; 87(5):1117-57. doi: 10.1080/00268979600100761

Raskovalov AA, Shevelin PYu. Physico-chemical Properties of the Molten CuCl–CuCl2 System: Experiment, Thermodynamics and Molecular Dynamics Simulations. J Sol Chem. 2018. In press. doi: 10.1007/s10953-018-0817-x

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551




DOI: https://doi.org/10.15826/chimtech.2018.5.3.05

Copyright (c) 2018 Anton Alexandrovich Raskovalov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International