Cover Image

Crystal structure and properties of novel oxide Sm0.9Ca1.1Fe0.7Co0.3O4-d

Anastasia P. Galayda, Nadezhda E. Volkova, Anastasia I. Dyagileva, Ludmila Ya. Gavrilova, Vladimir A. Cherepanov, Peter D. Battle

Abstract


Sm0.9Ca1.1Fe0.7Co0.3O4-δ oxide with the K2NiF4-type structure was prepared using a glycerin-nitrate technique. The XRD pattern of Sm0.9Ca1.1Fe0.7Co0.3O4-δ was refined by the Rietveld method within an orthorhombic structure (space group Bmab). The electrical conductivity, Seebeck coefficient, and thermal expansion of Sm0.9Ca1.1Fe0.7Co0.3O4-δ were measured depending on temperature in air. The change of oxygen nonstoichiometry determined by TGA in air does not exceed 0.01. The oxygen content in Sm0.9Ca1.1Fe0.7Co0.3O4-δ determined by the reduction in a hydrogen flux is equal to 3.96 ± 0.01. The positive value of Seebeck coefficient indicates that the predominant charge carriers in the oxide studied are electron holes.

Keywords


complex oxide; Ruddlesden-Popper phase; crystal structure; oxygen nonstoichiometry, electroconductivity; thermal expansion

Full Text:

PDF

References


Istomin SYa, Antipov EV. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ Chem Rev. 2013;82(7):686–700. doi:10.1070/RC2013v082n07ABEH004390

Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M. Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim Acta. 2010;55(20):5847–53. doi:10.1016/j.electacta.2010.05.034

Zhao F, Wang X, Wang Z, Peng R, Xia C. K2NiF4 type La2−xSrxCo0.8Ni0.2O4+δ as the cathodes for solid oxide fuel cells. Solid State Ionics. 2008;179:1450–3. doi:10.1016/j.ssi.2008.06.019

Daroukh MAl, Vashook VV, Ullmann H, Tietz F, Arual Raj I. Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics. 2003;158:141–50. doi:10.1016/S0167-2738(02)00773-7

Vashook VV, Yushkevich II, Kokhanovsky LV, Makhnach LV, Tolochko SP, Kononyuk IF, Ullmann H, Altenburg H. Composition and conductivity of some nickelates. Solid State Ionics. 1999;119:23–30. doi:10.1016/S0167-2738(98)00478-0

Ling Z, Xuezhong W, Cunzhen L. Catalytic combustion of diesel soot over K2NiF4-type oxides La2-xKxCuO4. J Rare Earths. 2008.;26(2):254–7. doi:10.1016/S1002-0721(08)60076-9

Skinner SJ. Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sci. 2003;5:419–26. doi:10.1016/S1293-2558(03)00050-5

Taguchi H, Nakade K, Hirota K. Synthesis and characterization of K2NiF4-type CaLnCoO4 (Ln = Sm and Gd). Mater Res Bull. 2007;42:649–56. doi:10.1016/j.materresbull.2006.08.004

Taguchi H, Kido H, Tabata T. Relationship between crystal structure and electrical property of K2NiF4-type (Ca1 xNd1+x)CoO4-. Physica B. 2004;344:271–7. doi:10.1016/j.physb.2003.09.270

Galayda AP, Volkova NE, Gavrilova LYa, Balymov KG, Cherepanov VA. Phase equilibria, structure and properties of intermediate phases in the Sm2O3-Fe2O3-CoO and Sm2O3-CaO-CoO systems. J Alloys Compd. 2017;718:288–97. doi:10.1016/j.jallcom.2017.05.044

Romero de Paz J, Fernández-Dı́az MT, Hernández Velasco J, Sáez Puche R, Martinez JL. Crystal and Magnetic Structure of PrCaCrO4. J Solid State Chem. 1999;142(1):29–32. doi:10.1006/jssc.1998.7973

Thorogood GJ, Orain P-Y, Ouvry M, Piriou B, Tedesco T, Wallwork KS, Herrmann J, James M. Structure, crystal chemistry and magnetism of rare earth calcium-doped cobaltates: Ln2 xCaxCoO4+δ (Ln=Pr, Nd, Sm, Eu, Gd). Solid State Sci. 2011;13:2113-23. doi:10.1016/j.solidstatesciences.2011.08.008

Volkova NE, Maklakova AV, Gavrilova LYa, Cherepanov VA. Phase equilibria, crystal structure, and properties of intermediate oxides in the Sm2O3–SrO–CoO system. Eur J Inorg Chem. 2017:3285–92. doi:10.1002/ejic.201700321

Nguyen-Trut-Dinh MM, Vlasse M, Perrin M, Le Flem G. Un oxide magnetique bidimensionnel: CaLaFeO4. J Solid State Chem. 1980;32:1–8. doi:10.1016/0022-4596(80)90262-5

Volkova NE, Gavrilova LYa, Cherepanov VA, Aksenova TV, Kolotygin VA, Kharton VV. Synthesis, crystal structure and properties of SmBaCo2-xFexO5+δ. J Solid State Chem. 2013:204;219–23. doi:10.1016/j.jssc.2013.06.001

Jennings AJ, Skinner SJ, Helgason Ö. Structural properties of LaxSr2-xFeO4± at high temperature and under reducing conditions. J Solid State Chem. 2003;175:207–17. doi:10.1016/S0022-4596(03)00248-2

Ki-Woog S, Ki-Tae L. Characterization of NdSrCo1-xFexO4+d (0≤x≤1.0) intergrowth oxide cathode materials for intermediate temperature solid oxide fuel cells. Ceram Int. 2011;37:573–7. doi:10.1016/j.ceramint.2010.10.004

Aksenova TV, Vakhromeeva AE, Elkalashy ShI, Urusova AS, Cherepanov VA. Phase equilibria, crystal structure, oxygen nonstoichiometry and thermal expansion of complex oxides in the Nd2O3 – SrO – Fe2O3 system. J Solid State Chem. 2017;251:70–8. doi:10.1016/j.jssc.2017.04.015

Singh S, Singh D. Effect of increasing Sr content on structural and physical properties of K2NiF4-type phase GdSrFeO4. Ceram Int. 2017;43:3369–76. doi:10.1016/j.ceramint.2016.11.182

Cottrell TL. The Strengths of Chemical Bonds. 2nd ed. London: Butterworth; 1958. 317 p.

Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics. 1995;76:259–71. doi:10.1016/0167-2738(94)00244-m

Tsipis EV, Kharton VV. Electrode materials and mechanisms in solid oxide fuel cells: brief review. J Solid State Electrochem. 2008;12(11):1367–91. doi:10.1007/s10008-008-0611-6

Pikalova EYu, Murashkina AA, Maragou VI, Demin AK, Strekalovsky VN, Tsiakaras PE. CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int J Hydrogen Energy. 2011;36:6175–83. doi:10.1016/j.ijhydene.2011.01.132




DOI: https://doi.org/10.15826/chimtech.2018.5.4.01

Copyright (c) 2018 Anastasia P. Galayda, Nadezhda E. Volkova, Anastasia I. Dyagileva, Ludmila Ya. Gavrilova, Vladimir A. Cherepanov, Peter D. Battle

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)