Cover Image

Sodium intercalation into α- and β-VOSO4

W. Deriouche, E. Anger, N. Amdouni, V. Pralong

Abstract


Na-ion battery is one of the best alternatives to Li-ion battery. Abundance of sodium on earth is three orders of magnitude higher than lithium, which should make Na-ion battery technology cheaper. But alkaline-ion battery prices, which tend to increase because of the massive world demand, also depend on the choice of electrode materials. Therefore, cost-effective electrode development remains an important subject of research because this will allow Na-ion battery to be even more competitive. Electrochemical performances of anhydrous VOSO4 as electrode for Na-ion battery are reported in this letter. Two anhydrous phases of vanadyl sulfate have been studied. The first one, α-VOSO4, shows that up to 0.8 sodium per formula unit (Na/f.u.) can be intercalated in this phase, and a reversible intercalation of 0.4 Na/f.u. has been observed with a strong polarization. The second one, β-VOSO4, can intercalate up to 0.9 Na/f.u. with a reversible intercalation of 0.4 Na/f.u. leading to a reversible capacity of 64 mAh/g.

Keywords


VOSO4; Na-ion Batteries; cathode; vanadium sulfate

Full Text:

PDF

References


Singh P, Shiva K, Celio H, Goodenough JB. Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ Sci. 2015;8:3000–5. doi:10.1039/C5EE02274F

Mason CW, Gocheva I, Hoster HE, Yu DYW. Iron(III) sulfate: a stable, cost effective electrode material for sodium ion batteries. Chem Commun. 2014;50:2249–51. doi:10.1039/C3CC47557C

Meng Y, Zhang S, Deng C. Superior sodium–lithium intercalation and depressed moisture sensitivity of a hierarchical sandwich-type nanostructure for a graphene–sulfate composite: a case study on Na2Fe(SO4)2·2H2O. J Mater Chem A. 2015;3:4484–92. doi:10.1039/C4TA06711H

Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun. 2014;5:4358. doi:10.1038/ncomms5358

Sun M, Rousse G, Saubanère M, Doublet ML, Dalla Corte D, Tarascon JM. A2VO(SO4)2 (A = Li, Na) as Electrodes for Li-Ion and Na-Ion Batteries. Chem Mater. 2016;28:6637–43. doi:10.1021/acs.chemmater.6b02759

Tudo J. Vanadyl sulfate and its reduction by hydrogen sulfide: vanadium sulfides. Rev Chim Miner. 1965;2(1):58-177.

Sieverts A, Müller EL. Vanadinverbindungen und siedende Schwefelsäure. Z Für Anorg Allg Chem. 1928;173(1):313–23. German. doi:10.1002/zaac.19281730128

Paufler P, Filatov SK, Bubnova RS, Krzhizhanovskaya MG. Synthesis and thermal behaviour of pauflerite, β-VOSO4, and its α-modification. Z Kristallogr - Cryst Mater. 2014;229:725–9. doi:10.1515/zkri-2014-1752

Longo JM, Arnott RJ. Structure and magnetic properties of VOSO4. J Solid State Chem. 1970;1(3-4):394–8. doi:10.1016/0022-4596(70)90121-0

Gaubicher J, Chabre Y, Angenault J, Lautié A, Quarton M. Lithium electrochemical intercalation in β-VOSO4. J Alloys Compd. 1997;262-3:34–8. doi:10.1016/S0925-8388(97)00325-3




DOI: https://doi.org/10.15826/chimtech.2019.6.1.04

Copyright (c) 2019 W. Deriouche, E. Anger, N. Amdouni, V. Pralong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice