Cover Image

Encapsulation of Ni nanoparticles with oxide shell in vapor condensation

I. V. Beketov, A. P. Safronov, A. I. Medvedev, A. M. Murzakaev, I. S. Zhidkov, S. O. Cholah, A. D. Maximov


Controlled input of oxygen into the inert working gas flow during the production of Ni nanoparticles by the electrical explosion of wire (EEW) method leads to the formation of a crystalline oxide shell on the surface of particles during their condensation from the vapor phase. Resulting oxide shells encapsulating Ni particles weaken their agglomeration processes as well as protect the surface of the Ni nanoparticles from further oxidation. The influence of the amount of energy introduced during EEW and the quantity of oxygen added to the working gas in EEW process on the properties of resulting Ni nanoparticles was studied. The obtained nickel nanopowders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption (BET) methods, which gave the specific surface area, the average diameter of nanoparticles, their phase composition, the morphology of the particles and the structure of the oxide shells. It was shown that the addition of oxygen leads to a decrease in the average diameter of Ni nanoparticles and reduces the degree of their agglomeration. The encapsulation of Ni nanoparticles with 3-5 nm thick gas-tight oxide shells protects the particles from oxidation and eliminates the pyrophoricity of the powder product.


nickel nanoparticles; oxide shells; encapsulation; electrical explosion of wire

Full Text:



Gusev AI. Nanomaterialy, nanostructury, nanotekhnologii. Moscow: Fizmatlit, 2005. 416 p. Russian.

Kotov YuA, Rhee ChK, Beketov IV, Bagazeyev AV, Demina TM, Murzakayev AM, Samatov OM, Timoshenkova OR, Medvedev AI, Shtols AK. Production of Copper Nanopowders by Electric Explosion of Wire-Study of Their Oxidation during Storage and Heating in Air. Journal of Metastable and Nanocrystalline Materials. 2003;15-16:343-8. doi:10.4028/

Athanassiou EK, Grass RN, Stark WJ. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology. 2006;17(6):1668-73. doi:10.1088/0957-4484/17/6/022

Hayashi C. Ultrafine particles. Journal of Vacuum Science & Technology A. 1987;5(4):1375-84. doi:10.1116/1.574773

Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature. 1994;372(6502):159-62. doi:10.1038/372159a0

Tomita S, Hikita M, Fujii M, Hayashi S, Akamatsu K, Deki S, Yasuda H. Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles. Journal of Applied Physics. 2000;88(9):5452-6. doi:10.1063/1.1317242

Zhang ZD, Zheng JG, Skorvanek I, Wen GH, Kovac J, Wang FW, Yu JL, Li ZJ, Dong XL, Jin SR, Liu W, Zhang XX. Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules. Journal of Physics: Condensed Matter. 2001;13(9):1921-9. doi:10.1088/0953-8984/13/9/314

Wartenberg HV, Reusch HJ, Saran E. Schmelzpunktsdiagramme höchstfeuerfester Oxyde. VII. Systeme mit CaO und BeO. Zeitschrift für anorganische und allgemeine Chemie. 1937;230(3):257-76. German. doi:10.1002/zaac.19372300309

Evans UR. Corrosion and Oxidation of Metals. London: Edward Arnold Ltd., 1960. 324 p.

Kotov YA. Electric Explosion of Wires as a Method for Preparation of Nanopowders. Journal of Nanoparticle Research. 2003;5(5):539-50. doi:10.1023/B:NANO.0000006069.45073.0b

Pohil PF, Belyaev AF et al. Gorenie poroshkoobraznykh metallov v aktyivnykh sredakh. Moscow: Nauka, 1972. 294 p. Russian.

Payne BP, Biesinger MC, McIntyre NS. The study of polycrystalline nickel metal oxidation by water vapour. Journal of Electron Spectroscopy and Related Phenomena. 2009;175(1):55-65. doi:10.1016/j.elspec.2009.07.006

Weidler N, Schuch J, Knaus F, Stenner P, Hoch S, Maljusch A, Schäfer R, Kaiser B, Jaegermann W. X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. Journal of Physical Chemistry C. 2017;121(12):6455-63. doi:10.1021/acs.jpcc.6b12652

Leedahl B, Boukhvalov DW, Kurmaev EZ, Kukharenko A, Zhidkov IS, Gavrilov NV, Cholakh SO, Huu Le P, Wei Luo C, Moewes A. Bulk vs. Surface Structure of 3d Metal Impurities in Topological Insulator Bi2Te3. Scientific Reports. 2017;7(1):5758. doi:10.1038/s41598-017-06069-3

Perel’man FM, Zvorykin AYa. Kobalt i nikel. Мoscow: Nauka, 1975. 215 p. Russian.


Copyright (c) 2019 Beketov IV, SafronovAP, Medvedev AI, Murzakaev AM, Zhidkov IS, Cholah SO, Maximov AD

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice