Cover Image

Synthesis, structure and magnetic properties of Ti doped La2MnNiO6 double perovskite

Uma Dutta, Ariful Haque, Md. Motin Seikh

Abstract


We report sol-gel synthesis, structural characterization and magnetic properties of La2Mn1-xTixNiO6 (0 ≤ x ≤ 1.0). Ti doping removed the biphasic structure of La2MnNiO6 by suppression of rhombohedral structure and all the Ti containing samples crystallized in monoclinic P21/n symmetry. La2MnNiO6 exhibits multiple magnetic transitions. The high temperature ferromagnetic transition of La2MnNiO6 gradually shifted to lower temperatures with increase in Ti doping. La2TiNiO6 (x = 1.0) does not show any long-range magnetic ordering. The suppression of magnetic transition by Ti doping is ascribed to the destruction of Mn4+—O—Ni2+ superexchange interaction. However, the signature of ferromagnetic phase persists up to 70% Ti doping, indicating the robustness of magnetic ordering in La2MnNiO6. These results suggest that the addition of Ti4+ truncates the ferromagnetic Mn4+—O—Ni2+ superexchange path and it likely promotes ferromagnetic cluster formation. The robustness of ferromagnetic state towards Ti substitution compared to the simple perovskite or spinel structure can be attributed to cationic ordering in double perovskite structure. Both the pure and Ti-doped samples exhibit magnetic frustration at lower temperatures due to partial cationic disordering. The absence of long-range ordering in La2TiNiO6, unlike La2TiCoO6 or Pr2TiCoO6, could be related to cationic disordering.

Keywords


double perovskite; ferromagnetic; superexchange interaction; magnetic frustration; cationic disorder; magnetic cluster

Full Text:

PDF

References


Raveau B, Seikh Md. M. Cobalt oxides: from crystal chemistry to physics, John Wiley & Sons; 2012.

Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature. 1998;395(6703):677–80. doi:10.1038/27167

von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 1993;71(14):2331–3. doi:10.1103/PhysRevLett.71.2331

Rao CNR, Raveau B. Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides. WORLD SCIENTIFIC;1998.

Baettig P, Ederer C, Spaldin NA. First principles study of the multiferroics BiFeO3,Bi2FeCrO6 and BiCrO6: Structure, polarization and magnetic ordering temperature. Phys. Rev. B. 2005;72(21):214105. doi:10.1103/PhysRevB.72.214105

Anderson M, Greenwood K, Taylor G, Poeppelmeier K. B-cation arrangements in double perovskites. Prog. Solid State Chem. 1993;22(3):197–233. doi:10.1016/0079-6786(93)90004-B

Balcells L, Navarro J, Bibes M, Roig A, Martı́nez B, Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Appl. Phys. Lett. 2001;78(6):781–3. doi:10.1063/1.1346624

Woodward PM. Octahedral Tilting in Perovskites. I. Geometrical Considerations Acta Crystallogr. Sect. B. Struct. Sci. 1997;53(1):32–43. doi:10.1107/S0108768196010713

Bos J-WG, Attfield JP. Structural and Magnetic Properties of the Double Perovskite LaCaMnNbO6. Z. Anorg. Allg. Chem. 2004;630(13–14):2248–52. doi:10.1002/zaac.200400159

Vasala S, Karppinen M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015;43(1–2):1–36. doi:10.1016/j.progsolidstchem.2014.08.001

Ortega N, Kumar A, Scott JF, Katiyar RS. Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter. 2015;27(50):504002. doi:10.1088/0953-8984/27/50/504002

Neenu Lekshmi P, Vasundhara M, Varma MR, Suresh KG, Valant M. Structural, magnetic and dielectric properties of rare earth based double perovskites RE2NiMnO6 (RE=La, pr, Sm, Tb). Phys. B Condens. Matter. 2014;448:285–9. doi:10.1016/j.physb.2014.04.057

Yadav R, Nair HS, Kumar A, Adiga S, Bhat HL, Yusuf SM, Elizabeth S. Investigation of dielectric relaxation, Jahn-Teller distortion, and magnetic ordering in Y substituted Pr1− xYxMnO3(0.1 ≤ x ≤ 0.4). J. Appl. Phys. 2015;117(9):093903. doi:10.1063/1.4913881

Rogado NS, Li J, Sleight AW, Subramanian MA. Magnetocapacitance and Magnetoresistance Near Room Temperature in a Ferromagnetic Semiconductor: La2NiMnO6. Adv. Mater. 2005;17(18):2225–7. doi:10.1002/adma.200500737

Dass RI, Yan, J-Q, Goodenough JB. Oxygen stoichiometry, ferromagnetism, and transport properties of La2-xNiMnO6+δ. Phys. Rev. B. 2003;68(6):064415. doi:10.1103/PhysRevB.68.064415

Joly VLJ, Joy PA, Date SK, Gopinath CS. Two ferromagnetic phases with different spin states of Mn and Ni in LaMn0.5Ni0.5O3. Phys. Rev. B. 2002;65(18):184416. doi:10.1103/PhysRevB.65.184416

Biswal AK, Ray J, Babu PD, Siruguri V, Vishwakarma PN. Dielectric relaxations in La2NiMnO6 with signatures of Griffiths phase . J. Appl. Phys. 2014;115(19):194106. doi:10.1063/1.4876723

Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare UV, Knut R, Karis O, Nordblad P, Sarma DD. Near-Room-Temperature Colossal Magnetodielectricity and Multiglass Properties in Partially Disordered La2MnNiO6. Phys. Rev. Lett. 2012;108(12):127201. doi:10.1103/PhysRevLett.108.127201

Mondal P, Bhattacharya D, Choudhury P, Mandal P. Dielectric anomaly at TN in LaMnO3 as a signature of coupling between spin and orbital degrees of freedom. Phys. Rev. B. 2007;76(17):172403. doi:10.1103/PhysRevB.76.172403

Ricciardo RA, Hauser AJ, Yang FY, Kim H, Lu W, Woodward PM. Structural, magnetic, and electronic characterization of double perovskites BixLa2-xMnMO6 (M = Ni, Co; x = 0.25, 0.50). Mater. Res. Bull. 2009;44(2):239–47. doi:10.1016/j.materresbull.2008.10.015

Sayed FN, Achary SN, Jayakumar OD, Deshpande SK, Krishna PSR, Chatterjee S, Ayyub P, Tyagi AK. Role of annealing conditions on the ferromagnetic and dielectric properties of La2NiMnO6. J. Mater. Res. 2011;26(4):567–77. doi:10.1557/jmr.2011.4

Gaikwad VM, Yadav KK, Lofland SE, Ramanujachary KV, Chakraverty S, Ganguli AK, Jha M. New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties. J. Magn. Magn. Mater. 2019;471:8–13. doi:10.1016/j.jmmm.2018.08.081

Biswal AK, Ray J, Babu PD, Siruguri V, Vishwakarma PN. Effect of Cu substitution on the magnetic and dielectric properties of La2NiMnO6. J. Appl. Phys. 2015;117(17):17B728. doi:10.1063/1.4917069

Yuan X, Li Q, Hu J, Xu M. Unusual dynamic magnetic behavior of polycrystalline La2NiMnO6. Phys. B Condens. Matter. 2013;424:73–8. doi:10.1016/j.physb.2013.04.057

Chandrasekhar KD, Das AK, Venimadhav A. Spin glass behaviour and extrinsic origin of magnetodielectric effect in non-multiferroic La2NiMnO6 nanoparticles. J. Phys. Condens. Matter. 2012;24(37):376003. doi:10.1088/0953-8984/24/37/376003

Dass RI, Goodenough JB. Multiple magnetic phases of La2CoMn6−δ (0<~δ<~0.05). Phys. Rev. B. 2003;67(1):014401. doi:10.1103/PhysRevB.67.01440

Blasse G. Magnetic properties of mixed metal oxides with ordered perovskite structure. Philips Res. Rep. 1965;20:327.

Holman KL, Huang Q, Klimczuk T, Trzebiatowski K, Bos JWG, Morosan E, Lynn JW, Cava RJ. Synthesis and properties of the double perovskites La2NiVO6, La2CoVO6, and La2CoTiO6. J. Solid State Chem. 2007;180(1):75–83. doi:10.1016/j.jssc.2006.09.013

Das N, Singh R, Das A, Gupta LC, Ganguli AK. Structural, magnetic and dielectric properties of a new double perovskite Pr2CoTiO6. J. Solid State Chem. 2017;253:355-9. doi:10.1016/j.jssc.2017.06.024

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 1976;32(5):751–67. doi:10.1107/S0567739476001551

Rodríguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. J. Phys. B Condens. Matter. 1993;192(1–2):55–69. doi:10.1016/0921-4526(93)90108-I

Blasco J, Sánchez MC, Pérez-Cacho J, Garcı́a J, Subı́as G, Campo J. Synthesis and structural study of LaNi1−xMnxO3+δ perovskites. J. Phys. Chem. Solids. 2002;63(5):781–92. doi:10.1016/S0022-3697(01)00228-1

Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M. Designed Ferromagnetic, Ferroelectric Bi2NiMnO6. J. Am. Chem. Soc. 2005;127(24):8889–92. doi:10.1021/ja0512576

Palakkal JP, Sankar CR, Varma MR. Magnetism and magnetoresistance in Al half doped LaNiO3. Mater. Chem. Phys. 2019;225:316–9. doi:10.1016/j.matchemphys.2019.01.001

Sarkar P, Khan N, Pradhan K, Mandal P. Collapse of ferromagnetism with Ti doping in Sm0.55Sr0.45MnO3. Phys. Rev. B. 2018;98(1):014422. doi:10.1103/PhysRevB.98.014422

Mujasambatoo K, Kumar S, Ansari MS. Ferrimagnetic Ordering of Ti4+ Doped Mn1+xFe2−2xO4 (0 ≤ x ≤ 0.5) Ferrites at Room Temperature. Sci. Adv. Mater. 2011;3(1):120–6. doi:10.1166/sam.2011.1143

Kumar S, Koo BH, Lee CG, Gautam S, Chae KH. Magnetic and Electronic Structure Studies of Mn1+xFe2-2xTixO4 (0 ≤ x ≤ 0.5) Ferrites. Funct. Mater. Lett. 2010;03(04):269–73. doi:10.1142/S1793604710001391

Devi Chandrasekhar K, Das AK, Mitra C, Venimadhav A. The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6. J. Phys. Condens. Matter. 2012;24(49):495901. doi:10.1088/0953-8984/24/49/495901

Zhou S, Shi L, Yang H, Zhao J. Evidence of short-range magnetic ordering above TC in the double perovskite La2NiMnO6. Appl. Phys. Lett. 2007;91(17):172505. doi:10.1063/1.2801694




DOI: https://doi.org/10.15826/chimtech.2019.6.3.01

Copyright (c) 2019 Md. Motin Seikh, Uma Dutta, Ariful Haque

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International