Graphical Abstract

TiO2 paste for DSSC photoanode: preparation and optimization of application method

I. O. Selyanin, A. S. Steparuk, R. A. Irgashev, A. V. Mekhaev, G. L. Rusinov, A. S. Vorokh


We propose a simple method of TiO2 paste preparation from titania powder (Degussa) and organic binders (terpineol, ethyl cellulose) for making a continuous photoactive layer of a dye-sensitized solar cell (DSSC). The prepared paste was characterized by using thermogravimetric and X-ray diffraction methods for comparison with commercial paste (Solaronix). The TiO2 layer parameters for applying and annealing were optimized by varying the layer thickness and using different masks. The surface morphology of annealed layers was controlled by optical microscopy. Before TiO2 paste applying and after annealing, the conductive glass (fluorine-tin oxide – FTO) was treated by TiCl4 hydrochloric acid solution. The structure of DSSCs were composed FTO-glass / TiO2 layer sensitized Ruthenium complex (N719 dye)/ iodide-based electrolyte / Pt counter electrode/ FTO glass. The DSSC photovoltaic characteristics were measured under AM 1.5G irradiation and demonstrated to be close to those of photoanodes based on the prepared and commercial pastes.


DSSC; Gratzel cell; TiO2 paste; photoanode; open-circuit photo voltage; short-circuit photocurrent density; I-V characteristics

Full Text:



Gratzel M. Mesoporous oxide junctions and nanostructured solar cells. Curr. Opin. Colloid Interface Sci. 1999;4(4):314–21. doi:10.1016/S1359-0294(99)90013-4

Joshi PH, Korfiatis DP, Potamianou SF, Thoma K-AT. Selected parameters leading to an optimized DSSC performance. Russ. J. Electrochem. 2013;49(7):628–32. doi:10.1134/S1023193513070045

Amit K, Sharma R, Pransu G, Boxman RL. Evaluation of the photo electrode degradation in dye sensitized solar cells. Russ. J. Electrochem. 2019;55(9):829–40. doi:10.1134/S1023193519090039

O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737–40. doi:10.1038/353737a0

Nizard H, Meyer T, Oberpriller H, Meyer M, Benien H. Assessment of photocatalytic activity of SolaronixTM nanostructured anatase, Journal of Photochemistry and Photobiology A: Chemistry. 2008;195(1):99–104. doi:10.1016/j.jphotochem.2007.09.012

Khalid Hossain M, Rahman MT, Basher MK. Influence of thickness variation of gamma-irradiated DSSC photoanodic TiO2 film on structural, morphological and optical properties. Optik. 2019;178:449–60. doi:10.1016/j.ijleo.2018.09.170

Kao MC, Chen HZ, Young SL, Kung CY, Lin CC. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films. 2009;517(17):5096–9. doi:10.1016/j.tsf.2009.03.102

Baglio V, Girolamo M, Antonucci V. Influence of TiO2 Film Thickness on the Electrochemical Behaviour of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2011;6:3375–84

Kumari JMKW, Sanjeevadharshini N, Dissanayake MAKL, Senadeera GKR, Thotawatthage CA. The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon J. Sci. 2016;45(1):33–41. doi:10.4038/cjs.v45i1.7362

Sedghi A, Miankushki HN. The Effect of Drying and Thickness of TiO2 Electrodes on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2015;10:3354–62

Fitra M, Daut I, Irwanto M, Gomesh N, Irwan YM. Effect of TiO2 Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013;36:278–86. doi:10.1016/j.egypro.2013.07.032

Mathew A, Rao GM, Munichandraiah N. Effect of TiO2 electrode thickness on photovoltaic properties of dye sensitized solar cell based on randomly oriented Titania nanotubes. Mater. Chem. Phys. 2011;127(1-2):95–101. doi:10.1016/j.matchemphys.2011.01.032


Copyright (c) 2020 Selyanin I.O., Steparuk A.S., Irgashev R.A., Mekhaev A.V., Rusinov G.L., Vorokh A.S.

© Chimica Techno Acta, 2014-2020
ISSN 2411-1414 (Online), ISSN 2409-5613 (Print)

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo