Cover Image

Synthesis, structure and electrical properties of Li+-doped pyrochlore Gd2Zr2O7

Irina A. Anokhina, Irina E. Animitsa, Anastasia F. Buzina, Vladimir I. Voronin, Vladimir B. Vykhodets, Tatyana E. Kurennykh, Yuri P. Zaikov

Abstract


The pyrochlore Gd1.55Li0.45Zr2O6.55 was prepared by the solution and solid-state methods. The introduction of lithium in the Gd-sublattice led to decrease in the lattice parameter a = 10.4830(8) Å in comparison with Gd2Zr2O7 (a =10.5346(2) Å). Monitoring of the lithium content in the sample during heat treatments showed a loss of lithium at temperatures above 1100 °C, so, to maintain the stoichiometry of lithium the low temperature sintering methods are required. The sample Gd1.55Li0.45Zr2O6.55 exhibited a predominant oxygen-ion transport over a wide range of temperatures.  Although doping did not lead to an increase in the oxygen-ion conductivity compared to Gd2Zr2O7, it caused the suppression of the hole conductivity.

Keywords


gadolinium zirconate Gd2Zr2O7, pyrochlore, Li+-doping, conductivity

Full Text:

PDF

References


Merwin A, Williamson MA, Willit JL, Chidambaram D. Review-Metallic lithium and the reduction of actinide oxides. Journal of the Electrochemical Society. 2017;164(8):H5236–46. doi:10.1149/2.0251708jes

Choi EY, Lee J. Complete reduction of high-density UO2 to metallic U in molten Li2O-LiCl. Journal of Nuclear Materials. 2017;494:439–47. doi:10.1016/j.jnucmat.2017.07.036

Willit JL, Miller WE, Battles JE. Electrorefining of uranium and plutonium - A literature review. Journal of Nuclear Materials. 1992;195(3):229–49. doi:10.1016/0022-3115(92)90515-M

Choi EY, Choi IK, Hur JM, Kang DS, Shin HS, Jeong SM. In situ electrochemical measurement of O2- concentration in molten Li2O/LiCl during uranium oxide reduction process. Electrochemical and Solid-State Letters. 2012;15(3):E11–E13. doi:10.1149/2.016203esl

Cho SH, Kim DY, Kwon S, Yoon BH, Lee JH. High-temperature corrosion characteristics of yttria-stabilized zirconia material in molten salts of LiCl-Li2O and LiCl-Li2O-Li. Journal of Nuclear Science and Technology. 2018;55(1):97–103. doi:10.1080/00223131.2017.1383214

Cho SH, Kim SW, Kim DY, Lee JH, Hur JM. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt. Journal of Nuclear Materials. 2017;490:85–93. doi:10.1016/j.jnucmat.2017.04.012

Lehmann H, Pitzer D, Pracht G, Vassen R, Stoever D. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. Journal of the American Ceramic Society. 2003;86(8):1338–44. doi:10.1111/j.1151-2916.2003.tb03473.x

Radha AV, Ushakov SV, Navrotsky A. Thermochemistry of lanthanum zirconate pyrochlore. Journal of Materials Research. 2009;24(11):3350–7. doi:10.1557/jmr.2009.0401

Volkov VN, Vykhodets VB, Golubkov IK, Klotsman SM, Lerkh PV, Pavlov VA. Accurate light ion beam monitoring by backscattering. Nucl Instrum and Meth. 1983;205:73-7. doi:10.1016/0167-5087(83)90175-8

Ziegler JF. Biersack JP. The stopping and ranges of ions in matter. New York: Pergamon Press; 1977.

Vykhodets VB, Klotsman SM, Levin AD. Oxygen diffusion in α-Ti: II. The calculation of the concentration profile of impurities in the nuclear microanalysis. The Phys. Metal & Metallogr. 1987;64:920–4.

Wuensch BJ, Eberman KW, Heremans C, Ku EM, Onnerud P, Yeo EME, Haile SM, Stalick JK, Jorgensen JD. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics. 2000;129:111–33. doi:10.1016/S0167-2738(99)00320-3

Zhang FX, Lang M, and Ewing RC. Atomic disorder in Gd2Zr2O7 pyrochlore. Applied Physics Letters. 2015;106:191902. doi:10.1063/1.4921268

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Michel D, Perez M, Jorba, Collongues R. Etude de la Transformation Ordre–De´sordre de la Structure Fluorite a` la Structure Pyrochlore pour des Phases (1-x) ZrO2 -x Ln2O3. Mater Res Bull. 1974;9:1457–68.

Uehara T, Koto K, Emura S, Kanamaru F. EXAFS study of fluorite and pyrochlore compounds in the system ZrO – GdO. Solid State Ionics. 1987;23:331–7. doi:10.1016/0167-2738(87)90012-9

Scheetz BE, White WB. Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J. Am. Ceram. Soc. 1979;62:468–70. doi:10.1111/j.1151-2916.1979.tb19107.x

Khal HEl, Cordier A, Batis N, Siebert E, Georges S, Steil MC. Effect of porosity on the electrical conductivity of LAMOX materials. Solid State Ionics. 2017;304:75–84. doi:10.1016/j.ssi.2017.03.028

Catlow CRA. Defects and disorder in crystalline and amorphous solids. Springer Science+Business Media Oordrecht; 1994. doi:10.1007/978-94-011-1942-9

Van Dijk MP, De Vries KJ, Burggraaf AJ. Electrical conductivity and defect chemistry of the system (TbxGd1−x)2Zr2O7+y (O≦x≦1;O≦y<0.25). Solid State Ionics. 1985;16:211–4. doi:10.1016/0167-2738(85)90045-1




DOI: https://doi.org/10.15826/chimtech.2020.7.2.02

Copyright (c) 2020 Irina A. Anokhina, Irina E. Animitsa, Anastasia F. Buzina, Vladimir I. Voronin, Vladimir B. Vykhodets, Tatyana E. Kurennykh, Yuri P. Zaikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice