Cover Image

Carbon coated Nickel Nanoparticles in Polyacrylamide Ferrogels: Interaction with Polymeric Network and Impact on Swelling

E. A. Mikhnevich, A. P. Safronov, I. V. Beketov, A. I. Medvedev

Abstract


Polyacrylamide ferrogels with embedded magnetic nanoparticles of metallic nickel (Ni) and nanoparticles of nickel coated with a carbon shell (Ni@C) were synthesized by radical polymerization in water. The effect of the carbon shell on the interaction of Ni and Ni@C nanoparticles with polyacrylamide matrix and on swelling ratio of the ferrogels has been studied. The deposition of carbon on the surface of Ni nanoparticles worsens their interaction with polyacrylamide but at the same time elevates the water uptake by ferrogels.

Keywords


nanoparticles; nickel; composites; ferrogels; polyacrylamide; carbon coatings

Full Text:

PDF

References


Abasi S, Podstawczyk DA, Sherback AF, Guiseppi-Elie A. Biotechnical properties of poly(HEMA- co-HPMA) hydrogels are governed by distribution among water states. ACS Biomater. Sci. Eng. 2019;5(10):4994–5004. doi:10.1021/acsbiomaterials.9b00705

Chen Z, Zhao D, Liu B, Nian G, Li X, Yin J, Qu S, Yang W. 3D printing of multifunctional hydrogels. Adv. Funct. Mater. 2019;29(20)1–8. doi:10.1002/adfm.201900971

Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6337):eaaf3627. doi:10.1126/science.aaf3627

Lui YS., Sow WT., Tan LP., Wu Y., Lai Y., Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19–36. doi:10.1016/j.actbio.2019.05.005

Zhou Y, Sharma N, Deshmukh P, Lakhman RK, Jain M, Kasi RM. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers. J. Am. Chem. Soc. 2012;134(3):1630–1641. https://doi:10.1021/ja208349x

Xie W, Gao Q, Guo Z, Wang D, Gao F, Wang X, Wei Y, Zhao L. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl. Mater. Interfaces 2017;9(39):33660–33673. doi:10.1021/acsami.7b10699

Noh M, Choi YH, An YH, Tahk D, Cho S, Yoon JW, Jeon NL, Park TH, Kim J, Hwang NS. Magnetic nanoparticle-embedded hydrogel sheet with a groove pattern for wound healing application. ACS Biomater. Sci. Eng. 2019;5(8):3909–3921. doi:10.1021/acsbiomaterials.8b01307

Tang J, Yin Q, Qiao Y, Wang T. Shape morphing of hydrogels in alternating magnetic field, ACS Appl. Mater. Interfaces. 2019);11(23):21194–21200. doi. org/10.1021/acsami.9b05742

Huang J, Liang Y, Huang Z, Zhao P, Liang Q, Liu Y, Duan L, Liu W, Zhu F, Bian L, Xia J, Xiong J, Wang D. Magnetic enhancement of chondrogenic differentiation of mesenchymal stem cells, ACS Biomater. Sci. Eng. 2019;5(5):2200–2207. doi:10.1021/acsbiomaterials.9b00025

Huang J, Liang Y, Jia Z, Chen J, Duan L, Liu W, Zhu F, Liang Q, Zhu W, You W, Xiong J, Wang D. Development of magnetic nanocomposite hydrogel with potential cartilage tissue engineering. ACS Omega. 2018;3(6):6182–6189. doi:10.1021/acsomega.8b00291

Zheng X, Wu D, Su T, Bao S, Liao C, Wang Q. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption. ACS Appl. Mater. Interfaces. 2014;6(22):19840–19849. doi:10.1021/am505177c

Tang SCN, Yan DYS, Lo IMC. Sustainable wastewater treatment using microsized magnetic hydrogel with magnetic separation technology. Ind. Eng. Chem. Res. 2014;53(40):15718–15724. doi:10.1021/ie502512h

Czichy C, Spangenberg J, Günther S, Gelinsky M, Odenbach S. Determination of the Young’s modulus for alginate-based hydrogel with magnetite-particles depending on storage conditions and particle concentration. J. Magn. Magn. Mater. 2020;501:166395. doi:10.1016/j.jmmm.2020.166395

Xulu PM, Filipcsei G, Zrínyi M. Preparation and Responsive Properties of Magnetically Soft Poly(N-isopropylacrylamide) Gels. Macromolecules. 2000;33(5):1716–1719. doi:10.1021/ma990967r

Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M. Magnetic Field-Responsive Smart Polymer Composites. Advances in Polymer Science. 2007;206:137–189. doi:10.1007/12_2006_104

Filipcsei G, Zrínyi M. Magnetodeformation Effects and the Swelling of Ferrogels in a Uniform Magnetic Field. J. Phys. Condens. 2010;22:276001. doi:10.1088/0953-8984/22/27/276001

Galicia JA, Sandre O, Cousin F, Guemghar D, Mеnager C, Cabuil V. Designing magnetic composite materials using aqueous magnetic fluids. Journal of Physics: Condensed Matter. 2003;15(15):S1379–S1402. doi:10.1088/0953-8984/15/15/306

Galicia J A, Cousin F, Dubois E, Sandre O, Cabiul V and Perzynski R. Static and dynamic structural probing of swollen polyacrylamide ferrogels. Soft Matter. 2009;5(13):2614–2624. doi:10.1039/b819189a

Galicia J A, Cousin F, Dubois E, Sandre O, Cabuil V and Perzynski R. Local structure of polymeric ferrogels. Journal of Magnetism and Magnetic Materials. 2011;323(10):1211–1215. doi:10.1016/j.jmmm.2010.11.008

Shankar A, Safronov AP, Mikhnevich EA, Beketov IV. Multidomain iron nanoparticles for the preparation of polyacrylamide ferrogels. Journal of Magnetism and Magnetic Materials. 2017:431:134–137. doi:10.1016/j.jmmm.2016.08.075

Shankar A, Safronov AP, Mikhnevich EA, Beketov IV, Kurlyandskaya GV. Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin-Landau-Verwey-Overbeek consideration, interfacial interactions and magnetodeformation. Soft Matter. 2017;13(18):3359-3372. doi:10.1039/C7SM00534B

Mikhnevich EA, Chebotkova PD, Safronov AP, Kurlyandskaya GV. Influence of uniform magnetic field on elastic modulus in polyacrylamide ferrogels with embedded nickel nanoparticles. Journal of Physics: Conference Series. 2019;1389(1):012059. doi:10.1088/1742-6596/1389/1/012059

Kurlyandskaya GV, Safronov AP, Bhagat SM, Lofland SE, Beketov IV, Prieto ML. Tailoring functional properties of Ni nanoparticles-acrylic copolymer composites with different concentrations of magnetic filler. J. Appl. Phys. 2015;117:123917. doi:10.1063/1.4916700

Beketov IV, Safronov AP, Medvedev AI, Murzakaev AM, Timoshenkova OR, Demina TM. In-situ formation of carbon shells on the surface of Ni nanoparticles synthesized by the electric explosion of wire. Nanosystems: physics, chemistry, mathematics. 2018;9(4):1-9. doi:10.17586/2220-8054-2018-9-4-513-520

Beketov IV, Safronov AP, Bagazeev AV, Larrañaga A, Kurlyandskaya GV, Medvedev AI. In situ modification of Fe and Ni magnetic nanopowders produced by the electrical explosion of wire. Journal of Alloys and Compounds. 2014;586:S483–S488. doi:10.1016/j.jallcom.2013.01.152




DOI: https://doi.org/10.15826/chimtech.2020.7.3.04

Copyright (c) 2020 Mikhnevich E.A., Safronov A.P., Beketov I.V., Medvedev A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice