Cover Image

ABO4 type scheelite phases in (Ca/Sr)MoO4 - BiVO4 - Bi2Mo3O12 systems: synthesis, structure and optical properties

Z. A. Mikhaylovskaya, E. S. Buyanova, S. A. Petrova, A. V. Klimova

Abstract


The cation deficient complex oxides of (Ca/Sr)MoO4 - BiVO4 - Bi2Mo3O12 triple system are promising photocatalysts and pigments. Compounds with general formula of
Ca1−1.5x-yBix+yФxMo1-yVyO4  and Sr1−1.5x-yBix+yФxMo1-yVyO4 were synthesized byconvention solid state technique in the range of 550–720 °C. Two wide regions of the solid solutions (ordinary and superstructured scheelite-type phases respectively) were found for each system. The diffuse scatering of homogeneous samples was investigated in the range of 190–1100 nm. Energy gaps calculated with linear approximation of Kubelka-Munk function decreases with bismuth and vanadium content.

Keywords


strontium bismuth molybdate; calcium bismuth molybdate; Kubelka-Munk method; energy gap

Full Text:

PDF

References


Frank M, Smetanin SN, Jelínek M, Vyhlídal D, Kopalkin AA, Shukshin VE, Ivleva LI, Zverev PG, Kubeček V. Synchronously-pumped all-solid-state SrMoO4 Raman laser generating at combined vibrational Raman modes with 26-fold pulse shortening down to 1.4 ps at 1220 nm. Opt Laser Technol. 2019;111:129-33. doi:10.1016/j.optlastec.2018.09.045

Kunzel R, Umisedo NK, Okuno E, Yoshimura EM, Marques AP. Effects of microwave-assisted hydrothermal treatment and beta particles irradiation on the thermoluminescence and optically stimulated luminescence of SrMoO4 powders. Ceram Int. 2020;46(10):15018-26. doi:10.1016/j.ceramint.2020.03.032

Yu H, Shi, X, Huang L, Kang X, Pan D. Solution-deposited and low temperature-annealed Eu3+/Tb3+-doped CaMoO4/SrMoO4 luminescent thin films. J Lumin. 2020;225:117371. doi:10.1016/j.jlumin.2020.117371

Elakkiya V, Sumathi S. Low-temperature synthesis of environment-friendly cool yellow pigment: Ce substituted SrMoO4. Mater Lett. 2019;263:127246. doi:10.1016/j.matlet.2019.127246

Mikhailik VB, Elyashevskyi Yu, Kraus H, Kim HJ, Kapustianyk V, Panasyuk M. Temperature dependence of scintillation properties of SrMoO4. Nucl Instrum Methods Phys Res A. 2015;792:1-5. doi:10.1016/j.nima.2015.04.018

Guo HH, Zhou D, Pang LX, Qi ZM. Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications. J Eur Ceram Soc. 2019;39(7):2365-73. doi:10.1016/j.jeurceramsoc.2019.02.010

Yu-Ling Y, Xue-Ming L, Wen-Lin F, Wu-Lin L, Chuan-Yi T. Co-precipitation synthesis and photoluminescence properties of (Ca1−x−yLny)MoO4: xEu3+ (Ln =Y, Gd) red phosphors. J Alloys Compd. 2010;505(1):239-42. doi:10.1016/j.jallcom.2010.06.037

Zhu Y, Zheng G, Dai Z, Zhang L, Ma Y. Photocatalytic and luminescent properties of SrMoO4 phosphors prepared via hydrothermal method with different stirring speeds. J Mater Sci Technol. 2017;33(1):23-39. doi:10.1016/j.jmst.2016.11.019

Yao Z-F, Zheng G-H, Dai Z-X, Zhang L-Y. Synthesis of the Dy: SrMoO4 with high photocatalytic activity under visible light irradiation. Appl Organomet Chem. 2018;32(8):e4412. doi:10.1002/aoc.4412

Wang Y, Xu H, Shao C, Cao J. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO4:Bi3+. Appl Surf Sci. 2017;392:649-57. doi:10.1016/j.apsusc.2016.09.09

Vidya S, John A, Solomon S, Thomas J. Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method. Adv Mater Res. 2012;1:191-204. doi:10.12989/amr.2012.1.3.191

Cheng J, Liu C, Cao W, Qi M, Shao G. Synthesis and electrical properties of scheelite Ca1-xSmxMoO4+d solid electrolyte ceramics. Mater Res Bull. 2011;46(2):185-9. doi:10.1016/j.materresbull.2010.11.019

Guo J, Randall CA, Zhou D, Zhang G, Zhang C, Jin B, Wang H. Correlation between vibrational modes and dielectric properties in (Ca1−3xBi2xx)MoO4 ceramics. J Eur Ceram Soc. 2015;35(3):4459-64. doi:10.1016/j.jeurceramsoc.2015.08.020

Pang L-X, Sun G-B, Zhou D. Ln2Mo3O12 (Ln = La, Nd): A novel group of low loss microwave dielectric ceramics with low sintering temperature. Mater Lett. 2011;65(2):164-6. doi:10.1016/j.matlet.2010.09.064

Esaka T. Ionic conduction in substituted scheelite-type oxides. Solid State Ionics. 2000;136-137(1-2):1-9. doi:10.1016/s0167-2738(00)00377-5

Yang X, Wang Y, Wang N, Wang S, Gao G. Effects of co-doped Li+ ions on luminescence of CaWO4:Sm3+ nanoparticles. J Mater Sci Mater Electronics. 2014;25:3996-4000. doi:10.1007/s10854-014-2119-4

Jiang P, Gao W, Cong R, Yang T. Structural investigation of the A-site vacancy in scheelites and the luminescence behavior of two continuous solid solutions A1-1.5xEux•0.5xWO4 and A0.64–0.5yEu0.24Liy•0.12–0.5yWO4 (A = Ca, Sr; • = vacancy). Dalton Trans. 2015;44(13):6175-83. doi:10.1039/c5dt00022j

Sleight JAW, Aykan K. New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure. J Solid State Chem. 1975;13(4):231-6. doi:10.1016/0022-4596(75)90124-3

Mikhaylovskaya ZA, Abrahams I, Petrova SA, Buyanova ES, Tarakina NV, Piankova DV, Morozova MV. Structural, photocatalytic and electroconductive properties of bismuth-substituted CaMoO4. J Solid State Chem. 2020;291:121627. doi:10.1016/j.jssc.2020.121627

Mikhaylovskaya ZA, Buyanova ES, Petrova SA, Nikitina АА. Sheelite-related strontium molybdates: synthesis and characterization. Chimica Techno Acta 2018;5(4):189-95. doi:10.15826/chimtech.2018.5.4.03

Kay MI, Frazer BC, Almodovar I. Neutron diffraction refinement of CaWO4. J Chem Phys. 1964;40(2):504-506. doi:10.1063/1.1725144

Yao W, Ye J. Photophysical and photocatalytic properties of Ca1-xBixVxMo1-xO4 solid solutions. J Phys Chem B. 2006;110:11188-95. doi:10.1021/jp0608729

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Verma A, Sharma SK. Rare-earth doped/codoped CaMoO4 phosphors: A candidate for solar spectrum conversion. Solid State Sci. 2019;96:105945. doi:10.1016/j.solidstatesciences.2019.105945




DOI: https://doi.org/10.15826/chimtech.2021.8.2.04

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2021 Zoya A. Mikhaylovskaya, Elena S. Buyanova, Sofia A. Petrova, Alexandra V. Klimova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2023
ISSN 2411-1414 (Online)
Copyright Notice