Cover Image

Bispyrenylalkane Chemosensor for the Naked-eye Detection of Nitro-explosives

I. S. Kovalev, L. K. Sadieva, O. S. Taniya, V. M. Yurk, A. S. Minin, D. S. Kopchuk, G. V. Zyryanov, V. N. Charushin, O. N. Chupakhin

Abstract


Pyrene-based compounds have a great potential as fluorescent chemosensors for various analytes including common nitro-explosives, such as 2,4,6-trinitrotoluene (TNT). Compounds having two pyrene units in one molecule, such as bispyrenylalkanes, are able to form stable, bright emissive in a visual wavelength region excimers both in non-polar and polar environments. In this work we wish to report that in non-polar solvents the excimer has poor chemosensing properties while in aqueous solutions it provides significant “turn-off” fluorescence response to TNT in the sub-nanomolar concentrations.

Keywords


detection of explosives in aqueous media; chemical sensors; pyrene-based fluorophores; fluorescence quenching

Full Text:

PDF

References


Yinon J, Zitrin S. The Analysis of Explosives. Elsevier; 1981. 322 p.

Kangas MJ, Burks RM, Atwater J, Lukowicz RM, Williams P, Holmes AE. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Crit Rev Anal Chem. 2017;47(2):138–53. doi:10.1080/10408347.2016.1233805

Jenkins TF, Walsh ME. Development of field screening methods for TNT, 2,4-DNT and RDX in soil. Talanta. 1992;39(4):419–28. doi:10.1016/0039-9140(92)80158-A

Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev. 2019;119(1):231–92. doi:10.1021/acs.chemrev.8b00226

Wen P, Amin M, Herzog WD, Kunz RR. Key challenges and prospects for optical standoff trace detection of explosives. TrAC - Trends Anal Chem. 2018;100:136–44. doi:10.1016/j.trac.2017.12.014

Sun X, Lei Y. Fluorescent carbon dots and their sensing applications. TrAC - Trends Anal Chem. 2017;89:163–80. doi:10.1016/j.trac.2017.02.001

Sun X, Wang Y, Lei Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem Soc Rev. 2015 Nov 21;44(22):8019–61. doi:10.1039/c5cs00496a

Zyryanov GV, Kopchuk DS, Kovalev IS, Nosova EV, Rusinov VL, Chupakhin ON. Chemosensors for detection of nitroaromatic compounds (explosives). Russ Chem Rev. 2014;83(9):783–819. doi:10.1070/RC2014v083n09ABEH004467

Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S. Optical chemosensors and reagents to detect explosives. Chem Soc Rev. 2012;41(3):1261–96. doi:10.1039/c1cs15173h

Zyryanov GV, Palacios MA, Anzenbacher P. Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Org Lett. 2008;10(17):3681–4. doi:10.1021/ol801030u

Beyazkilic P, Yildirim A, Bayindir M. Formation of Pyrene Excimers in Mesoporous Ormosil Thin Films for Visual Detection of Nitro-explosives. ACS Appl Mater Interfaces. 2014;6(7):4997–5004. doi:10.1021/am406035v

Xiao FN, Wang K, Wang FB, Xia XH. Highly Stable and Luminescent Layered Hybrid Materials for Sensitive Detection of TNT Explosives. Anal Chem. 2015;87(8):4530–7. doi:10.1021/acs.analchem.5b00630

Demirel GB, Daglar B, Bayindir M. Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chem Commun. 2013;49(55):6140–2. doi:10.1039/c3cc43202e

Andrew TL, Swager TM. A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. J Am Chem Soc. 2007;129(23):7254–5. doi:10.1021/ja071911c

Mosca L, Karimi Behzad S, Anzenbacher P. Small-Molecule Turn-On Fluorescent Probes for RDX. J Am Chem Soc. 2015;137(25):7967–9. doi:10.1021/jacs.5b04643

Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: The past, present and future. Chem Soc Rev. 2017;46(23):7105–23. doi:10.1039/c7cs00240h

Ohno K, Satoh H, Iwamoto T. Quantum chemical exploration of dimeric forms of polycyclic aromatic hydrocarbons, naphthalene, perylene, and coronene. Chem Phys Lett. 2019;716:147–54. doi:10.1016/J.CPLETT.2018.12.034

Marsh AV, Cheetham NJ, Little M, Dyson M, White AJP, Beavis P, Warriner CN, Swain AC, Stavrinou PN, Heeney M. Carborane-Induced Excimer Emission of Severely Twisted Bis-o-Carboranyl Chrysene. Angew Chemie Int Ed. 2018;57(33):10640–5. doi:10.1002/anie.201805967

Šoustek P, Michl M, Almonasy N, Machalický O, Dvořák M, Lyčka A. The synthesis and fluorescence of N-substituted 1- and 2-aminopyrenes. Dye Pigment. 2008;78(2):139–47. doi:10.1016/j.dyepig.2007.11.003

Suzuki Y, Morozumi T, Nakamura H, Shimomura M, Hayashita T, Bartsh RA. New fluorimetric alkali and alkaline earth metal cation sensors based on noncyclic crown ethers by means of intramolecular excimer formation of pyrene. J Phys Chem B. 1998;102(40):7910–7. doi:10.1021/jp981567t

Hrdlovič P, Horinová L, Chmela Š. Spectral properties of ionic derivatives of pyrene and their aggregates with anionic surfactant and polyelectrolyte. Can J Chem. 1995;73(11):1948–54. doi:10.1139/v95-240

Daems D, Van den Zegel M, Boens N, De Schryver FC. Fluorescence decay of pyrene in small and large unilamellar L,α-Dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature. Eur Biophys J. 1985;12(2):97–105. doi:10.1007/BF00260432

Kim JJ, Beardslee RA, Phillips DT, Offen HW. Fluorescence lifetimes of pyrene monomer and excimer at high pressures. J Chem Phys. 1969;51:2761–2. doi:10.1063/1.1672406

Ruiu A, Vonlanthen M, Rojas-Montoya SM, González-Méndez I, Rivera E. Unusual fluorescence behavior of pyrene-amine containing dendrimers. Molecules. 2019;24(22). doi:10.3390/molecules24224083

Lin TI. Excimer fluorescence of pyrene-tropomyosin adducts. Biophys Chem. 1982;15(4):277–88. doi:10.1016/0301-4622(82)80011-2

Wang X, Liu L, Zhu S, Peng J, Li L. Preparation of exciplex-based fluorescent organic nanoparticles and their application in cell imaging. RSC Adv. 2017;7(65):40842–8. doi:10.1039/c7ra08142a

Kanagalingam S, Spartalis J, Cao TM, Duhamel J. Scaling relations related to the kinetics of excimer formation between pyrene groups attached onto poly(N,N-dimethylacrylamide)s. Macromolecules. 2002;35(22):8571–7. doi:10.1021/ma020784w

Bertolotti SG, Previtali CM. Fluorescence of pyrene derivatives in the presence of poly(methallyl sulfonate-vinyl acetate) copolymers. effect of charge density. J Macromol Sci Part A. 1994;31(4):439–49. doi:10.1080/10601329409351530

Förster T, Kasper K. Ein Konzentrationsumschlag der Fluoreszenz des Pyrens. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys Chemie. 1955;59(10):976–80. German. doi:10.1524/zpch.1954.1.5_6.275

Rehm D, Weller A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr J Chem. 1970;8(2):259–71. doi:10.1002/ijch.197000029

Goodpaster JV, McGuffin VL. Fluorescence quenching as an indirect detection method for nitrated explosives. Anal Chem. 2001;73(9):2004–11. doi:10.1021/ac001347n

Zachariasse K, Kühnle W. Intramolecular Excimers with α,ω-Diarylalkanes. Zeitschrift für Phys Chemie. 1976;101(1–6):267–76. doi:10.1524/zpch.1976.101.1-6.267

Ikeda T, Lee B, Tazuke S, Takenaka A. Time-resolved observation of excitation hopping between two anthryl moieties attached to both ends of alkanes: simulation based on conformational analysis. J Am Chem Soc. 1990;112(12):4650–6. doi:10.1021/ja00168a004

Zhang P, Zhang L, Wang H, Zhang DW, Li ZT. Helical folding of an arylamide polymer in water and organic solvents of varying polarity. Polym Chem. 2015;6(15):2955–61. doi:10.1039/C5PY00096C

Ikai T, Shimizu S, Awata S, Kudo T, Yamada T, Maeda K, Kanoh S. Synthesis and chiroptical properties of a π-conjugated polymer containing glucose-linked biphenyl units in the main chain capable of folding into a helical conformation. Polym Chem. 2016;7(48):7522–9. doi:10.1039/C6PY01759B

Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2(1):21. doi:10.4103/2229-5186.79345




DOI: https://doi.org/10.15826/chimtech.2021.8.2.09

Copyright (c) 2021 I.S. Kovalev, L.K. Sadieva, O.S. Taniya, V.M. Yurk, A.S. Minin, D.S. Kopchuk, G.V. Zyryanov, V.N. Charushin, O.N. Chupakhin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice