Cover Image

Crystal structure, thermal and electrotransport properties of NdBa1–xSrxFeCo0.5Cu0.5O5+δ (0.02 ≤ x ≤ 0.20) solid solutions

A. I. Klyndyuk, Ya. Yu. Zhuravleva, N. N. Gundilovich


Using solid-state reactions method, the solid solutions of layered oxygen-deficient perovskites NdBa1–xSrxFeCo0.5Cu0.5O5+δ (0.02 ≤ x ≤ 0.20) were prepared; their crystal structure, thermal stability, thermal expansion, electrical conductivity and thermopower were studied. It was found that NdBa1–xSrxFeCo0.5Cu0.5O5+δ phases crystallize in tetragonal syngony (space group P4/mmm) and are p-type semiconductors, whose conductivity character at high temperatures changed to the metallic one due to evolution from the samples of so-called weakly-bonded oxygen. Partial substitution of barium by strontium in NdBaFeCo0.5Cu0.5O5+δ leads to the small decreasing of unit cell parameters, thermal stability and thermopower of NdBa1–xSrxFeCo0.5Cu0.5O5+δ solid solutions, increasing of their electrical conductivity values and slightly affects their linear thermal expansion coefficient and activation energy of electrical transport values.


layered perovskites; thermal stability; thermal expansion; electrical conductivity; thermo-EMF

Full Text:



Klyndyuk AI. Perovskite-like Oxides 0112 Type: Srtucture, Properties and Possible Applications. Advances in Chemistry Research. V. 5. Ed. by J.C. Taylor. Nova Sci Publ: New-York; 2010. P. 59–105

Lyagaeva J, Danilov N, Tarutin A, Vdovin G, Medvedev D, Demin A, Tsiakaras P. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3–delta. Dalton Trans. 2018; 47(24): 8149–8157. doi:10.1039/c8dt015-1-1b

Tsvetkov DS, Ivanov IL, Malyshkin DA, Sednev AL, Sereda VV, Zuev AYu. Double perovskites REBaCo2–xMxO6-delta (RE = La, Pr, Nd, Eu, Gd, Y; M = Fe, Mn) as energy-related materials: an overview. Pure Appl Chem. 2019; 19(6): 923–940. doi:10.1515/pac-2018-1103

Afroze S, Karim AK, Cheok Q, Eriksson S, Azad AK. Latest development of double perovskite electrode materials for solid oxide fuel cell: a review. Front Energy. 2019; 13: 770–897. doi:10.1007/s1708-019-0651-x

Kaur P, Singh C. Review of perovskite-structure related cathode materials for solid oxide fuel cell. Ceramics International. 2020; 46(5): 5521–5535. doi: 10.1016/j.ceramint.2019.11.066

Istomin SYa, Lyskov NV, Mazo GN, Antipov EV. Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cell. Russ Chem Rev. 2021; 90(6): 644–676. doi: 10.1070/RCR4979

Kim J-H, Manthiram A. Layered LnBaCo2O5+delta oxides as cathodes for intermediate-temperature solid oxide fuel cell. J Electrochem Soc. 2008; 155: 3385. doi:10.1149/1.2839028

Kim J-H, Manthiram A. Layered LnBaCo2O5+delta perovskite cathodes for solid oxide fuel cells: an overview and perspective. J Mater Chem. 2015; 3: 24195–24210. doi:10.1039/CSTA062124

Lin Y, Jin F, Yang X, Nik B, Li Y, He T. YBaCo2O5+delta-based double perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties. Electrochim Acta. 2019; 297: 344–454. doi:10.1016/j.electacta.2018.11.214

Kharton V, Marques F, Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State ionics. 2004; 174: 135–149. doi: 10.1016/j.ssi.2004.06.015

Xue J, Shen Y, He T. Performance of double-perovskite YBa0.5Sr0.5Co2O5+delta as cathode material for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy. 2011; 36: 6894–6898. doi:10.1016/j.ijhydene.2011.02.090

Cherepanov VA, Aksenova TV, Gavrilova LY, Mikhaleva KN. Structure, nonstoichiometry and thermal expansion of NdBa(Co,Fe)2O5+delta layered perovskites. Solid State Ionics. 2011; 188: 53–87. doi: 10.1016/j.ssi.2010.10.021

Zhang S-L, Chen K, Zhang A-P, Li C-X, Li C-Y. Effect of Fe doping on the performance of suspension plasma-sprayed PrBa0.5Sr0.5Co2–xFexO5+delta cathodes for intermediate-temperature solid oxide fuel cells. Ceramics International. 2017; 43: 11648–11655. doi:10.1016/j.ceramint.2017.05.438

Jin F, Li Y, Wang Y, Chu X, Xu M, Zhai Y, Zhang Y, Fang W, Zou P, He T. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+delta as a novel cathode for intermediate-temperature solid oxide fuel cells. Ceramics International. 2018; 44: 22489–22496. doi:10.1016/j.ceramint.2018.09.018

Cordaro G, Donazzi A, Pelosato R, Mastropasqua L, Cristiani C, Sora IN, Dotelli G. Structural and Electrochemical Characterization of NdBa1–xCo2–yFeyO5+delta as Cathode for Intermediate Temperature Solid Oxide Fuel Cells. J Electrochem Soc. 2020; 167: 024502. doi:10.1149/1945-7111/ab628b

Klyndyuk AI, Mosiałek M, Kharitonov DS, Chizhova EA, Zimovska M, Socha RP, Komenda A. Structural and electrochemical characterization of YBa(Fe,Co,Cu)2O5+delta layered perovskites as cathode materials for solid oxide fuel cells. Int J Hydrog Energy. 2021; 46(32): 16977–16988. doi: 10.1016/j.ijhydene.2021.01.141

Klyndyuk AI, Chizhova EA. Crystal structure, Thermal Expansion, and Electrical Properties of Layered LaBa(Fe,Co,Cu)2O5+delta (Ln = Nd, Sm, Gd) Oxides. Glass Phys Chem. 2014; 40(1): 124–128. doi:10.1134/S10876595961401012X

Klyndyuk AI, Chizhova EA. Structure, Thermal Expansion, and Electrical Properties of BiFeO3–NdMnO3 Solid Solutions. Inorg Mater. 2015; 51(3): 272–277. doi:10.1134/S0020168515020090

Klyndyuk AI, Chizhova EA, Poznyak AI. Preparation and Characterization of Bi4–xPrxTi3O10 Solid Solutions. Chimica Techno Acta. 2017; 4(4): 211–217. doi: 10.15826/chimtech/2017.4.4.01

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides. Acta Cryst. 32: 751–767. doi:10.1107/S0567739476001551

Atanassova YK, Popov VN, Bogachev GG, Iliev MN, Mitros C, Psycharis V, Pissas M. Raman- and infrared active phonons in YBaCuFeO5: experimental and lattice dynamics. Phys Rev B. 1993; 47: 15201–15207. doi: 10.1103/PhysRevB.47.15201

Klyndyuk AI, Chizhova EA. Physicochemical Properties of La(Ba, M)CuFeO5+delta (M = Sr, Ca, Mg) solid solutions. Inorg Mater. 2006; 42(4): 436–442. doi:10.1134/S0020168506040182

Mott NF, Davis EA. Electronic Processes in Non-Crystalline Materials. 2nd ed. New York, USA: Oxford University Press. 1979. 605 p


Copyright (c) 2021 A.I. Klyndyuk, Ya.Yu. Zhuravleva, N.N. Gundilovich

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)