Cover Image

Synthesis, crystal structure, and thermal stability of double borate Na3ErB2O6

Alexey K. Subanakov, Evgeniy V. Kovtunets, Bair G. Bazarov, Jibzema G. Bazarova


Double borate Na3ErB2O6 was synthesized by the solid-state reaction. The crystal structure of Na3ErB2O6 was refined by the Rietveld method: P21/c, a = 6.49775(14) Å, = 8.50424(17) Å, = 12.0067(3) Å, β = 118.4797(9)°, = 4. The crystal structure of Na3ErB2O6 consists of –[ErO6]-chains along the "b" axis, which are linked by BO3 triangles in a three-dimensional framework. Sodium atoms occupy empty positions inside the channels. The thermal behavior of Na3ErB2O6 was studied in detail in the range of 25–1150 °C range by DSC and TG methods. Na3ErB2O6 congruently melts at 1116 °C. Based on the results of DSC measurements, three reversible phase transitions were found for Na3ErB2O6.


sodium rare-earth borate; solid-state reaction; crystal structure; Rietveld refinement; thermal analysis

Full Text:



Mutailipu M, Poeppelmeier KR, Pan S. Borates: A Rich Source for Optical Materials. Chem Rev. 2021;121:1130–1202. doi:10.1021/acs.chemrev.0c00796

Yang SH, Xue H, Guo SP. Borates as promising electrode materials for rechargeable batteries. Coord Chem Rev. 2021;427. doi:10.1016/j.ccr.2020.213551

Leonyuk NI, Maltsev VV, Volkova EA. Crystal chemistry of high-temperature borates. Molecules. 2020;25. doi:10.3390/MOLECULES25102450

Topnikova AP, Belokoneva EL. The structure and classifica-tion of complex borates. Russ Chem Rev. 2019;88:204–228. doi:10.1070/rcr4835

Mutailipu M, Zhang M, Yang Z, Pan S. Targeting the Next Generation of Deep-Ultraviolet Nonlinear Optical Materi-als: Expanding from Borates to Borate Fluorides to Fluo-rooxoborates. Acc Chem Res. 2019;52:791–801. doi:10.1021/acs.accounts.8b00649

Becker P. Borate materials in nonlinear optics. Adv Mater. 1998;10:979–992. doi:10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N

Chen C, Wu Y, Li R. The development of new NLO crystals in the borate series. J Cryst Growth. 1990;99:790–798. doi:10.1016/S0022-0248(08)80028-0

Kovtunets EV, Subanakov AK, Bazarov BG. Synthesis, struc-ture and luminescent properties of the new double borate K3Eu3B4O12. Kondens Sredy Mezhfaznye Granitsy. 2020;22:219–224. doi:10.17308/kcmf.2020.22/2823

Subanakov AK, Kovtunets EV, Bazarov BG, Dorzhieva SG, Bazarova JG. New double holmium borates: Rb3HoB6O12 and Rb3Ho2B3O9. Solid State Sci. 2020;105. doi:10.1016/j.solidstatesciences.2020.106231

Subanakov AK, Kovtunets EV, Bazarov BG, Pugachev AM, Sofich DO, Bazarova JG. Exploration of structural, thermal and vibrational properties of new noncentrosymmetric dou-ble borate Rb3Tm2B3O9. Solid State Sci. 2021;120. doi:10.1016/j.solidstatesciences.2021.106719

Xia M, Shen S, Lu J, Sun Y, Li R. K3Li3Gd7(BO3)9: A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cool-ing. Chem – A Eur J. 2018;24:3147–3150. doi:10.1002/chem.201705669

Xia M, Zhai K, Lu J, Sun Y, Li RK. Orthoborates LiCdRE5(BO3)6 (RE = Sm–Lu and Y) with Rare-Earth Ions on a Triangular Lattice: Synthesis, Crystal Structure, and Opti-cal and Magnetic Properties. Inorg Chem. 2017;56:8100–8105. doi:10.1021/acs.inorgchem.7b00756

Xia M-J, Li RK. A new quaternary rare earth borate, CsLi2Gd4(BO3)5. Acta Crystallogr Sect E Struct Reports Online. 2007;63. doi:10.1107/S1600536807036586

Chen C, Wu Y, Li R. The development of new NLO crystals in the borate series. J Cryst Growth. 1990;99:790–798. doi:10.1016/S0022-0248(08)80028-0

Chen C, Li R. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int Rev Phys Chem. 1988;8:65–91. doi:10.1080/01442358909353223

Qin F, Li RK. Predicting refractive indices of the borate opti-cal crystals. J Cryst Growth. 2011;318:642–644. doi:10.1016/J.JCRYSGRO.2010.08.037

Yu H, Pan Z, Zhang H, Wang J. Recent advances in self-frequency-doubling crystals. J Mater. 2016;2:55–65. doi:10.1016/j.jmat.2015.12.001

Jia Z, Xia M. Congruent melt terbium-rich borate Na2Tb2B2O7: Synthesis, crystal structure, optical and mag-netic properties.J Alloys Compd. 2018;743:537–542. doi:10.1016/j.jallcom.2018.02.031

Shan F, Zhang G, Yao J, Xu T, Zhang X, Fu Y, et al. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2. Opt Mater (Amst). 2015;46:461–466. doi:10.1016/j.optmat.2015.05.004

Nagpure PA, Omanwar SK. Synthesis and photolumines-cence study of rare earth activated phosphor Na2La2B2O7. J Lumin. 2012;132:2088–2091. doi:10.1016/j.jlumin.2012.03.068

Mascetti J, Fouassier C, Hagenmuller P. Concentration quenching of the Nd3+ emission in alkali rare earth borates. J Solid State Chem. 1983;50:204–212. doi:10.1016/0022-4596(83)90189-5

Wang Z, Li H, Cai G, Jin Z. Synthesis, crystal structure, and thermal stability of new borates Na3REB2O6 (RE = Pr, Sm, Eu). Powder Diffr. 2016;31:110–117. doi:10.1017/S0885715616000051

Zhang Y, Chen XL, Liang JK, Xu T. Synthesis and structural study of new rare earth sodium borates Na3Ln(BO3)2 (Ln=Y, Gd). J Alloys Compd. 2002;333:72–75. doi:10.1016/S0925-8388(01)01689-9

Zhang G, Wu Y, Fu P, Wang G, Liu H, Fan G, et al. A new sodium samarium borate Na3Sm2(BO3)3. J Phys Chem Solids. 2001;63:145–9. doi:10.1016/S0022-3697(01)00090-7

Yang Z, Ning Y, Keszler DA. Na3Sc2(BO3)3. Acta Crystallogr Sect E Struct Reports Online. 2006;62:266–268. doi:10.1107/S1600536806036737

Zhou WW, Zhuang RZ, Zhao W, Wang GF, Zhang LZ, Ma JG, et al. Second harmonic generation in Na3Gd2(BO3)3 crystals. Cryst Res Technol. 2011;46:926–930. doi:10.1002/crat.201100077

Shan F, Kang L, Zhang G, Yao J, Lin Z, Xia M, et al. Na3Y3(BO3)4: A new noncentrosymmetric borate with an open-framework structure. Dalt Trans. 2016;45:7205–7208. doi:10.1039/c6dt00950f

Gravereau P, Chaminade JP, Pechev S, Nikolov V, Ivanova D, Peshev P. Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O–La2O3–B2O3: Preparation and crystal structure. Solid State Sci. 2002. doi:10.1016/S1293-2558(02)01344-4

Zhang J, Zhang G, Li Y, Wu Y, Fu P, Wu Y. Thermophysical properties of a new nonlinear optical Na3La9O3(BO3)8 crys-tal. Cryst Growth Des. 2010;10:4965–4967. doi:10.1021/cg1010743

Coelho AA. Topas: General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker AXS, 2005.


Copyright (c) 2021 Alexey K. Subanakov, Evgeniy V. Kovtunets, Bair G. Bazarov, Jibzema G. Bazarova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice