Bright blue emissions on UV-excitation of LaBO3 (B=In, Ga, Al) perovskite structured phosphors for commercial solid-state lighting applications
Abstract
Bright blue photoluminescence (PL) was obtained from Bi3+-activated LaBO3 (B = In, Ga, Al) perovskite nanophosphors. A cost-effective and low-temperature chemical route was employed for preparing Bi3+ doped LaBO3 (B=In, Ga, Al) which were then annealed at 1000 °C. The phase formation, morphological studies and luminescent properties of the as-prepared samples were performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and optical absorption spectroscopy. Comparison of emission intensities, lifetime studies, energy band gaps and color purity of all samples (pure and Bi3+ doped) were investigated for promising applications in UV light-emitting diodes, variable frequency drive (VFD), field emission display (FED), and other photoelectric fields.
Keywords
Full Text:
PDFReferences
Ferreira RX, Xie E, McKendry JJ, Rajbhandari S, Chun H, Faulkner G, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol Lett. 2016;28(19):2023–2026. doi:10.1109/LPT.2016.2581318
Peng S, Zhao Y, Fu C, Pu X, Zhou L, Huang Y, et al. Acquiring high‐performance deep‐blue OLED emitters through an unexpected blueshift color‐tuning effect induced by electron‐donating‐OMe substituents. Chem Eur J. 2018;24(32):8056–8060. doi:10.1002/chem.201800974
De J, Yang W-Y, Bala I, Gupta SP, Yadav RAK, Dubey DK, et al. Room-temperature columnar liquid crystals as efficient pure deep-blue emitters in organic light-emitting diodes with an external quantum efficiency of 4.0%. ACS Appl Mater Interfaces. 2019;11(8):8291–8300. doi:10.1021/acsami.8b18749
Nakamura S. Background story of the invention of efficient InGaN blue‐light‐emitting diodes (Nobel Lecture). Angewandte Chem Int Edition. 2015;54(27):7770–7788. doi:10.1002/anie.201500591
Wang C-Y, Takeda T, Ten Kate OM, Tansho M, Deguchi K, Takahashi K, et al. Ce-doped La3Si6.5Al1.5N9.5O5.5, a rare highly efficient blue-emitting phosphor at short wavelength toward high color rendering white LED application. ACS Appl Mater Interfaces. 2017;9(27):22665–22675. doi:10.1021/acsami.7b03909
Zhang J, Zhang J, Zhou W, Ji X, Ma W, Qiu Z, et al. Composition screening in blue-emitting Li4Sr1+xCa0.97–x (SiO4)2: Ce3+ phosphors for high quantum efficiency and thermally stable photoluminescence. ACS Appl Mater Interfaces. 2017;9(36):30746–30754. doi:10.1021/acsami.7b08671
Pawade V, Dhoble S. Novel blue‐emitting SrMg2Al16O27: Eu2+ phosphor for solid‐state lighting. Lumin. 2011;26(6):722–727. doi:10.1002/bio.1304
Li G, Tian Y, Zhao Y, Lin J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem Soc Rev. 2015;44(23):8688–8713. doi:10.1039/C4CS00446A
Han J, Pan F, Molokeev MS, Dai J, Peng M, Zhou W, et al. Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9:Bi3+ phosphor for white light-emitting diodes. ACS Appl Mater Interfaces. 2018;10(16):13660–13668. doi:10.1021/acsami.8b00808
Sun W, Li H, Zheng B, Pang R, Jiang L, Zhang S, et al. Electronic structure and photoluminescence properties of a novel single-phased color tunable phosphor KAlGeO4: Bi3+, Eu3+ for WLEDs. J Alloys Compd. 2019;774:477–486. doi:10.1016/j.jallcom.2018.10.087
Li H, Pang R, Liu G, Sun W, Li D, Jiang L, et al. Synthesis and luminescence properties of Bi3+-activated K2MgGeO4: a promising high-brightness orange-emitting phosphor for WLEDs conversion. Inorganic Chem. 2018;57(19):12303–12311. doi:10.1021/acs.inorgchem.8b02025
Jiang Z, Gou J, Min Y, Huang C, Lv W, Yu X, et al. Crystal structure and luminescence properties of a novel non-rare-earth activated blue-emitting garnet phosphor Ca4ZrGe3O12: Bi3+ for n-UV pumped light-emitting diodes. J Alloys Compd. 2017;727:63–68. doi:10.1016/j.jallcom.2017.08.109
Li H, Pang R, Luo Y, Wu H, Zhang S, Jiang L, et al. Structural micromodulation on Bi3+-doped Ba2Ga2GeO7 phosphor with considerable tunability of the defect-oriented optical properties. ACS Appl Electron Mater. 2019;1(2):229–237. doi:10.1021/acsaelm.8b00072
Valange S, Beauchaud A, Barrault J, Gabelica Z, Daturi M, Can F. Lanthanum oxides for the selective synthesis of phytosterol esters: correlation between catalytic and acid–base properties. J Catalysis. 2007;251(1):113–122. doi:10.1016/j.jcat.2007.07.004
Onishi Y, Nakamura T, Adachi S. Solubility limit and luminescence properties of Eu3+ ions in Al2O3 powder. J Lumin. 2016;176:266–271. doi:10.1016/j.jlumin.2016.03.030
Mann CK, Mann CK, Vickers TJ, Gulick WM. Instrumental analysis: HarperCollins Publishers; 1974.
Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol. 2001;2(4):261–276. doi:10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P
Yoffe AD. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys. 2001;50(1):1–208. doi:10.1080/00018730010006608
Yu M, Lin J, Zhou Y, Wang S. Citrate–gel synthesis and luminescent properties of ZnGa2O4 doped with Mn2+ and Eu3+. Mater Lett. 2002;56(6):1007–1013. doi:10.1016/S0167-577X(02)00664-X
Babu KE, Murali N, Babu KV, Shibeshi PT, Veeraiah V. Investigation of optoelectronic properties of cubic perovskite LaGaO3. AIP Conf Proceed. 2014. doi:10.1063/1.4898236
Yang HK, Oh JH, Moon BK, Jeong JH, Yi SS. Photoluminescent properties of near- infrared excited blue emission in Yb, Tm co-doped LaGaO3 phosphors. Ceram Int. 2014;40(8):13357–13361. doi:10.1016/j.ceramint.2014.05.051
Jacquier B, Boulon G, Sallavuard G, Gaume-Mahn F. Bi3+ center in a lanthanum gallate phosphor. J Solid State Chem. 1972;4(3):374–378. doi:10.1016/0022-4596(72)90152-1
Porter-Chapman Y, Bourret-Courchesne E, Derenzo SE. Bi3+ luminescence in ABiO2Cl (A = Sr, Ba) and BaBiO2Br. J Lumin. 2008;128(1):87–91. doi:10.1016/j.jlumin.2007.05.007
Weigel M, Middel W, Blasse G. Influence of ns2 ions on the luminescence of niobates and tantalates. J Mater Chem. 1995, 5, 981–983. doi:10.1039/JM9950500981
Yadav RS, Rai SB. Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. J Alloys Compd. 2017;700:228–237. doi:10.1016/j.jallcom.2017.01.074
Shaik EB, Kamal CS, Srinivasu K, et al. Optical insights of indium-doped β–Ga2O3 nanoparticles and its luminescence mechanism. J Mater Sci Mater Electron. 2020;31:6185–6191. doi:10.1007/s10854-020-03171-7
Erkişi A, Gökoğlu G, Sürücü G, Ellialtıoğlu R, Yıldırım EK. First-principles investigation of LaGaO3 and LaInO3 lanthanum perovskite oxides. Philosoph Mag. 2016;96(19):2040–2058. doi:10.1080/14786435.2016.1189100
Srivastava AM. Luminescence of Bi3+ in LaGaO3. Mater Res Bull. 1999;34(9):1391–1396. doi:10.1016/S0025-5408(99)00149-X
He H, Huang X, Chen L. Sr-doped LaInO3 and its possible application in a single layer SOFC. Solid State Ionics. 2000;130(3–4):183–193. doi:10.1016/S0167-2738(00)00666-4
Ruiz-Trejo E, Tavizon G, Arroyo-Landeros A. Structure, point defects and ion migration in LaInO3. J Phys Chem Solids. 2003;64(3):515–521. doi:10.1016/S0022-3697(02)00358-X
Blasse G, Bril A. Crystal structure and fluorescence of some lanthanide gallium borates. J Inorg Nucl Chem. 1967;29(1):266–267.
DOI: https://doi.org/10.15826/chimtech.2022.9.1.07
Copyright (c) 2022 B.V. Naveen Kumar, T. Samuel, Samatha Bevara, K. Ramachandra Rao, Satya Kamal Chirauri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice