Cover Image

Metal-Organic Frameworks for Metal-Ion Batteries: Towards Scalability

Semyon Bachinin, Venera Gilemkhanova, Maria Timofeeva, Yuliya Kenzhebayeva, Andrei Yankin, Valentin A. Milichko


Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.


metal-organic frameworks; batteries; spin coating; vapour deposition

Full Text:



Nguyen TP, Easley AD, Kang N, Khan S, Lim SM, Rezenom YH, Wooley KL. Polypeptide organic radical batteries. Nature. 2021;593(7857):61-6. doi:10.1038/s41586-021-03399-1

Xu G, Nie P, Dou H, Ding B, Li L, Zhang X. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today. 2017;20(4):191-209. doi:10.1016/j.mattod.2016.10.003

Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276-79. doi:10.1038/46248

Mezenov YA, Krasilin AA, Dzyuba VP, Nominé A, Milichko VA. Metal–organic frameworks in modern physics: Highlights and perspectives. Advanced Science. 2019;6(17):1900506. doi:10.1002/advs.201900506

Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry. 2019;2(1):1-14. doi:10.1038/s42004-019-0184-6

Xie LS, Skorupskii G, Dincă M. Electrically conductive metal–organic frameworks. Chemical reviews. 2020;120(16):8536-80. doi:10.1021/acs.chemrev.9b00766

Dou JH, Sun L, Ge Y, Li W, Hendon CH, Li J, Dincă M. Signature of metallic behavior in the metal–organic frameworks M3 (hexaiminobenzene) 2 (M = Ni, Cu). Journal of the American Chemical Society. 2017;139(39):13608-11. doi:10.1021/jacs.7b07234

Clough AJ, Orchanian NM, Skelton JM, Neer AJ, Howard SA, Downes CA, Marinescu SC. Room Temperature Metallic Conductivity in a Metal–Organic Framework Induced by Oxidation. Journal of the American Chemical Society. 2019;141(41):16323-30. doi:10.1021/jacs.9b06898

He Y, Cubuk ED, Allendorf MD, Reed EJ. Metallic metal–organic frameworks predicted by the combination of machine learning methods and ab initio calculations. The journal of physical chemistry letters. 2018;9(16):4562-9. doi:10.1021/acs.jpclett.8b01707

Foster ME, Sohlberg K, Allendorf MD, Talin AA. Unraveling the semiconducting/metallic discrepancy in Ni3 (HITP) 2. The journal of physical chemistry letters. 2018;9(3):481-6. doi:10.1021/acs.jpclett.7b03140

Zhong M, Kong L, Zhao K, Zhang YH, Li N, Bu XH. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. Advanced Science. 2021;8(4):2001980. doi:10.1002/advs.202001980

Zheng ZJ, Ye H, Guo ZP. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy & Environmental Science. 2021;14(4):1835-53. doi:10.1039/D0EE03181J

Thakur AK, Majumder M, Patole SP, Zaghib K, Reddy MV. Metal–organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Materials Advances. 2021;2(8):2457-82. doi:10.1039/D0MA01019G

Wen X, Zhang Q, Guan J. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews. 2020;409:213214. doi:10.1016/j.ccr.2020.213214

Sun W, Tang X, Wang Y. Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries. Electrochemical Energy Reviews. 2020;3(1):127-54. doi:10.1007/s41918-019-00056-0

Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Lu X. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. Journal of Energy Storage. 2019;21:632-46. doi:10.1016/j.est.2018.12.025

Du J, Li F, Sun L. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews. 2021;4461(4):214118. doi:10.1039/D0CS01191F

Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Yang W. Metal–Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials. 2021;33(27):2008784. doi:10.1002/adma.202008784

Zhu W, Li A, Wang Z, Yang J, Xu Y. Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small. 2021;17(22):2006424. doi:10.1002/smll.202006424

Jiang Y, Zhao H, Yue L, Liang J, Li T, Liu Q, Sun X. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications. 2020;22:106881. doi:10.1016/j.elecom.2020.106881

Zhao R, Liang Z, Zou R, Xu Q. Metal-organic frameworks for batteries. Joule. 2018;2(11):2235–59. doi:10.1016/j.joule.2018.09.019

Reddy RCK, Lin J, Chen Y, Zeng C, Lin X, Cai Y, Su CY. Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coordination Chemistry Reviews. 2020;420:213434. doi:10.1016/j.ccr.2020.213434

Wu Q, Zhou X, Xu J, Cao F, Li C. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry. 2019;38:94-113. doi:10.1016/j.jechem.2019.01.005

Wang ZY, Tao HZ, Yue Y. Metal-organic-framework-based cathodes for enhancing the electrochemical performances of batteries: a review. ChemElectroChem. 2019;6(21):5358-74. doi:10.1002/celc.201900843

Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Deep A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews. 2019;393:48-78. doi:10.1016/j.ccr.2019.05.006

Zhang L, Liu H, Shi W, Cheng P. Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coordination Chemistry Reviews. 2019;388:293-309. doi:10.1016/j.ccr.2019.02.030

Barbosa J, Gonçalves RF, Costa CM, de Zea Bermudez V, Fidalgo A, Zhang Q, Lanceros-Mendez S. Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances. 2021;2(12):3790-805. doi:10.1039/D1MA00244A

Huang WH, Li XM, Yang XF, Zhang XX, Wang HH, Wang H. The recent progress and perspectives on metal-and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers. 2021;5(9):3593-613. doi:10.1039/D0QM00936A

Chu Z, Gao X, Wang C, Wang T, Wang G. Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. Journal of Materials Chemistry A. 2021;9(12):7301-16. doi:10.1039/D0TA11624F

Chen T, Chen S, Chen Y, Zhao M, Losic D, Zhang S. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers. 2021;5(4):1771-94. doi:10.1039/d0qm00856g

Furukawa H, Müller U, Yaghi OM. “Heterogeneity within order” in metal–organic frameworks. Angewandte Chemie International Edition. 2015;54(11):3417-30. doi:10.1002/anie.201410252

Ren J, Dyosiba X, Musyoka NM, Langmi HW,Mathe M. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews. 2017;352:187-219. doi:10.1016/j.ccr.2017.09.005

Silva P, Vilela SMF, Tome JPC, Almeida Paz FA. Multifunctional metal-organic frameworks: from academia to industrial applications. Chemistry Society Reviews. 2015;44:6774–803. doi:10.1039/c5cs00307e

Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chemical Society Reviews. 2017;46(11):3453-80. doi:10.1039/c7cs00109f

Johnson EM, Ilic S, Morris AJ. Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Science.2021;7(3):445-53. doi:10.1021/acscentsci.1c00047

Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. 2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie International Edition. 2021;60(11):5612-24. doi:10.1002/anie.202006102

Day RW, Bediako DK, Rezaee M, Parent LR, Skorupskii G, Arguilla MQ, Dincă M. Single crystals of electrically conductive two-dimensional metal–organic frameworks: Structural and electrical transport properties. ACS central science. 2019;5(12):1959-64. doi:10.1021/acscentsci.9b01006

Nam KW, Park SS, dos Reis R. et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Community. 2019;10:4948. doi:10.1038/s41467-019-12857-4

Gu S, Bai Z, Majumder S, Huang B, Chen G. Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. Journal of Power Sources. 2019;429:22-9. doi:10.1016/j.jpowsour.2019.04.087

Li Z, Huang X, Sun C, Chen X, Hu J, Stein A, Tang B. Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. Journal of Materials Science. 2017;52:3979–91. doi:10.1007/s10853-016-0660-7

Luo Y, Wu M, Pang B, Ge J, Li R, Zhang P, Okada S. Metal-organic Framework of [Cu2 (BIPA-TC)(DMA) 2] n: A Promising Anode Material for Lithium-Ion Battery. ChemistrySelect. 2020;5(14):4160-4. doi:10.1002/slct.202000503

Weng YG, Yin WY, Jiang M, Hou JL, Shao J, Zhu QY, & Dai J. Tetrathiafulvalene-Based Metal–Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2020;12(47):52615-23. doi:10.1021/acsami.0c14510

Han Y, Qi P, Zhou J, Feng X, Li S, Fu X, Wang B. Metal–organic frameworks (Mofs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS applied materials & interfaces. 2015;7(48):26608-13. doi:10.1021/acsami.5b08109

Gao C, Wang P, Wang Z, Kær SK, Zhang Y, Yue Y. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy. 2019;65:104032. doi:10.1016/j.nanoen.2019.104032

Zhao G, Tang L, Zhang L, Chen X, Mao Y, Sun K. Well-developed capacitive-capacity of metal-organic framework derived Co3O4 films in Li ion battery anodes. Journal of Alloys and Compounds. 2018;746:277-84. doi:10.1016/j.jallcom.2018.02.285

Mutahir S, Wang C, Song J, Wang L, Lei W, Jiao X, Hao Q. Pristine Co (BDC) TED0. 5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Applied Materials Today. 2020;21:100813. doi:10.1016/j.apmt.2020.100813

Wang J, Dong S, Zhang Y, Chen Z, Jiang S, Wu L, Zhang X. Metal–organic framework derived titanium-based anode materials for lithium ion batteries. Nano-Structures & Nano-Objects. 2018;15:48-53. doi:10.1016/j.nanoso.2018.03.004

Li H, Lang J, Lei S, Chen J, Wang K, Liu L, Yan X. A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials. Advanced Functional Materials. 2018;28(30):1800757. doi:10.1002/adfm.201800757

Nagarathinam M, Saravanan K, Phua EJH, Reddy MV, Chowdari BVR, Vittal JJ. Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries. Angewandte Chemie International Edition. 2012;51(24):5866-70. doi:10.1002/anie.201200210

Zou F, Liu K, Cheng CF, Ji Y, Zhu, Y. Metal-organic frameworks (MOFs) derived carbon-coated NiS nanoparticles anchored on graphene layers for high-performance Li-S cathode material. Nanotechnology. 2020;31(48):485404. doi:10.1088/1361-6528/abae9b

Xue R, Liu N, Bao L, Chen L, Su Y, Lu Y, Wu F. UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material. Journal of Energy Chemistry. 2020;50:378-86. doi:10.1016/j.jechem.2020.03.049

Shimizu T, Wang H, Matsumura D, Mitsuhara K, Ohta T, Yoshikawa H. Porous Metal–Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium-Ion Batteries. ChemSusChem. 2020;13(9):2256-22. doi:10.1002/cssc.201903471

Sadakiyo M, Kitagawa H. Ion-conductive metal–organic frameworks. Dalton Transactions. 2021;50(16):5385-97. doi:10.1039/D0DT04384B

Wiers BM, Foo ML, Balsara NP, Long JR. A solid lithium electrolyte via addition of lithium isopropoxide to a metal–organic framework with open metal sites. Journal of the American Chemical Society. 2011;133(37):14522-5. doi:10.1021/ja205827z

Fujie K, Ikeda R, Otsubo K, Yamada T, Kitagawa H. Lithium ion diffusion in a metal–organic framework mediated by an ionic liquid. Chemistry of Materials. 2015;27(21):7355-61. doi:10.1021/acs.chemmater.5b02986

Park SS, Tulchinsky Y, Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. Journal of the American Chemical Society. 2017;139(38):13260-3. doi:10.1021/jacs.7b06197

Wu JF, Guo X. Nanostructured Metal–Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small. 2019;15(5):1804413. doi:10.1002/smll.201804413

Luo J, Li Y, Zhang H, Wang A, Lo WS, Dong Q, Wang D. A metal–organic framework thin film for selective Mg2+ transport. Angewandte Chemie International Edition. 2019;58(43):15313-17. doi:10.1002/anie.201908706

Kinik FP, Uzun A, Keskin S. Ionic liquid/metal–organic framework composites: from synthesis to applications. ChemSusChem. 2017;10(14):2842-63. doi:10.1002/cssc.201700716

Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method. ACS applied materials & interfaces. 2016;8(31):20459-64. doi:10.1021/acsami.6b04701

Gutierrez M, Martín C, Souza BE, Van der Auweraer M, Hofkens J, Tan JC. Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today. 2020;21:100817. doi:10.1016/j.apmt.2020.100817

Chen X, Lu Y, Dong J, Ma L, Yi Z, Wang Y, Liu Y. Ultrafast In Situ Synthesis of Large-Area Conductive Metal–Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. ACS Applied Materials & Interfaces. 2020;12(51):57235-44. doi:10.1021/acsami.0c18422

Fan L, Guo Z, Zhang Y, Wu X, Zhao C, Sun X, Zhang N. Stable artificial solid electrolyte interphase films for lithium metal anode via metal–organic frameworks cemented by polyvinyl alcohol. Journal of Materials Chemistry A. 2020;8(1):251-8. doi:10.1039/c9ta10405d

Gutierrez M, Martín C, Souza BE, Van der Auweraer M, Hofkens J, Tan JC. Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today. 2020;21:100817. doi:10.1016/j.apmt.2020.100817

Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Ameloot R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature materials. 2016;15(3):304-10. doi:10.1038/nmat4509

Han S, Ciufo RA, Meyerson ML, Keitz BK, Mullins CB. Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemistry A. 2019;7(33):19396-406. doi:10.1039/c9ta05179a

Stassin T, Rodríguez-Hermida S, Schrode B, Cruz AJ, Carraro F, Kravchenko D, Ameloot R. Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications. 2019;55(68):10056-9. doi:10.1039/c9cc05161a

Cruz AJ, Stassen I, Krishtab M, Marcoen K, Stassin T, Rodríguez-Hermida S, Teyssandier J, Pletincx S, Verbeke R, Rubio-Giménez V. Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films. Chem Mater. 2019;31:9462. doi:10.1021/acs.chemmater.9b03435

Stassin T, Stassen I, Marreiros J, Cruz AJ, Verbeke R, Tu M, Reinsch H, Dickmann M, Egger W, Vankelecom IFJ. Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Large-Pore Metal–Organic Framework MAF-6. Chem Mater. 2020;32:1784. doi:10.1021/acs.chemmater.9b03807

Stassin T, Stassen I, Wauteraerts N, Cruz AJ, Kräuter M, Coclite AM, de Vos D, Ameloot R. Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Framework. Eur J Inorg Chem. 2020;2020:71. doi:10.1002/ejic.201901051

Krishtab M, Stassen I, Stassin T, Cruz AJ, Okudur OO, Armini S, Wilson C, de Gendt S, Ameloot R. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nature Communications. 2019;10:3729. doi:10.1038/s41467-019-11703-x

Stassin T, Waitschat S, Heidenreich N, Reinsch H, Pluschkell F, Kravchenko D, Marreiros J, Stassen I, van Dinter J, Verbeke R. Aqueous Flow Reactor and Vapour-Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties. Chemistry. 2020;26:10841. doi:10.1002/chem.202001661

Tu M, Kravchenko DE, Xia B, Rubio-Giménez V, Wauteraerts N, Verbeke R, Vankelecom IFJ, Stassin T, Egger W, Dickmann M. Template-mediated control over polymorphism in the vapor-assisted formation of zeolitic imidazolate framework powders and films. Angew Chem Int Ed. 2021;133:7631. doi:10.1002/anie.202014791

Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews. 2012;112(2):933-69. doi:10.1021/cr200304e

Mezenov YA, Kulachenkov NK, Yankin AN, Rzhevskiy SS, Alekseevskiy PV, Gilemkhanova VD, Milichko VA. Polymer Matrix Incorporated with ZIF-8 for Application in Nonlinear Optics. Nanomaterials. 2020;10(6):1036. doi:10.3390/nano10061036

Isaeva VI, Kustov LM. Microwave activation as an alternative production of metal-organic frameworks. Russian Chemical Bulletin. 2016;65(9):2103-14. doi:10.1007/s11172-016-1559-9

Thomas-Hillman I, Laybourn A, Dodds C, Kingman SW. Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. Journal of Materials Chemistry A. 2018;6(25):11564-81. doi:10.1039/c8ta02919a

Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev. 2015;285:11–23. doi:10.1016/j.ccr.2014.10.008

Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today. 2021;46:109-24. doi:10.1016/j.mattod.2021.01.008

Al-Kutubi H, Gascon J, Sudhölter EJR, Rassaei L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem. 2015;2(4):462-74. doi:10.1002/celc.201402429

Liu J, Woll C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem Soc Rev. 2017;46:5730-70. doi:10.1039/C7CS00315C


Copyright (c) 2021 Semyon Bachinin, Venera Gilemkhanova, Maria Timofeeva, Yuliya Kenzhebayeva, Andrei Yankin, Valentin A. Milichko

© Chimica Techno Acta, 2014-2021
ISSN 2411-1414 (Online)

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo