Cover Image

Sensitivity of the phenoxy derivatives of 2,4-dihydro-5H-[1,2,3]triazolo[4,5-d]pyrimidin-5-ones to acidic and basic stimuli

Alexander K. Eltyshev, Nataliya P. Belskaya

Abstract


Herein we report the research on the sensitivity of six hydroxy derivatives of dihydrotriazolopyrimidines (HO-DTP) to acids and bases. The UV/Vis and fluorescence spectra of these compounds were investigated with the addition of the acids and bases. Spectral data revealed the strong red shifts for emission and absorption maxima in the presence of KOH and NaOH. Moreover, two DTPs demonstrated strengthening of the emission intensity. The obtained results and data published in our previous paper demonstrated the strong and selective sensory response of DTPs to the acids and bases and elucidated relationships between the structure and sensitivity to the environment. This finding allowed us to manage these properties by introducing the combination of substituents and functionalities into the heterocyclic core. Thus, investigations demonstrated the potential of the application of DTPs as chemo- and fluorosensors for selective detection of acids and bases.

Keywords


dihydrotriazolopyrimidines; acid; base; fluorescence; sensor

Full Text:

PDF

References


Qian J, Zhang Y, Liu X, Xia J. Carbazole and fluorene polyaniline derivatives: Synthesis, properties and application as multiple stimuli-responsive fluorescent chemosensor. Talanta. 2019;204:592–601. doi:10.1016/j.talanta.2019.06.038

Valeur B, Berberan-Santos MN. Molecular Fluorescence. Weinheim: Wiley VCH; 2013. 592 p.

Srinivasan R, Phillips TE, Bargeron CB, Carlson MA, Schemm ER, Saffarian HM. Embedded micro-sensor for monitoring pH in concrete structures. Proc SPIE. 2000;3988:40–4. doi:10.1117/12.383169

Basheer PAM, Grattan KTV, Sun T, Long AE, McPolin D, Xie W. Fibre optic chemical sensor systems for monitoring pH changes in concrete. Proc SPIE. 2004;5586:144–53. doi:10.1117/12.601198

Hecht M, Kraus W, Rurack K. A highly fluorescent pH sensing membrane for the alkaline pH range incorporating a BODIPY dye. Analyst. 2013;138(1):325–32. doi:10.1039/C2AN35860C

Gotor R, Ashokkumar P, Hech M, Keil K, Rurack K. Optical pH sensor covering the range from pH 0-14 compatible with mobile-device readout and based on a set of rationally designed indicator dyes. Anal Chem. 2017;89(16):8437–44. doi:10.1021/acs.analchem.7b01903

Pfeifer D, Klimart I, Borisov SM. Ultra-bright red-emitting photostable perylene bisimide dyes: new indicators for ratiometric sensing of high pH or carbon dioxide. Chem Eur J. 2018;24:10711–20. doi:10.1002/chem.201800867

Eltyshev AK, Suntsova PO, Karmatskaia KD, Taniya OS, Slepukhin PA, Benassi E, Belskaya NP. An effective and facile synthesis of new blue fluorophores on the basis of an 8-azapurine core. Org Biomol Chem. 2018;16(48):9420–29. doi:10.1039/C8OB02644K

Li X, Peng Y, Liu H , Xu Y , Wang X , Zhang C, Ma X. Comparative studies on the interaction of nine flavonoids with trypsin. Spectrochim Acta A. 2020;238:118440. doi:10.1016/j.saa.2020.118440

Yao J, He Y, Su N, Bharath SR, Tao Y, Jin JM, Chen W, Song H, Tang SY. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat Commun. 2020;11:1515. doi:10.1038/s41467-020-14918-5

Jadhav AS, Carreira-Blanco C, Fernández B, González Fernández S, Malkhede DD, Mosquera MM, Ríos Rodríguez MC, Rodríguez-Prieto F. Firefly luciferin precursor 2-cyano-6-hydroxybenzothiazole: Fluorescence à la carte controlled by solvent and acidity. Dyes Pigm. 2020;177:108285. doi:10.1016/j.dyepig.2020.108285

Aysha TS, El-Sedik MS, Mohamed MBI, Gaballah ST, Kamel MM. Dyes Pigm 2019;170:107549. doi:10.1016/j.dyepig.2019.107549

Zhang J, Lia J, Chen B, Kan J, Jiang T, Zhang W, Yue J, Zhou J. An off-on fluorescent probe for real-time sensing the fluctuations of intracellular pH values in biological processes. Dyes Pigm. 2019;170:107620. doi:10.1016/j.dyepig.2019.107620

Bondar K, Bokan M, Gellerman G, Patsenker LD. Water-soluble 4-hydroxystyryl and 4-hydroxyphenyl-butadienyls dyes with switchable fluorescence. Dyes Pigm. 2020;172:107801. doi:10.1016/j.dyepig.2019.107801

Seo MH, Han J, Jin Z, Lee DW, Park HS, Kim HS. Controlled and Oriented Immobilization of Protein by Site-Specific Incorporation of Unnatural Amino Acid. Anal Chem. 2011;83(8):2841–45. doi:10.1021/ac103334b

Eichelbaum K, Winter M, Berriel Diaz M, Herzig S, Krijgsveld J. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol. 2012;30:984–90. doi:10.1038/nbt.2356

Raliski BK, Howard CA, Young DD. Site-Specific Protein Immobilization Using Unnatural Amino Acids. Bioconjugate Chem. 2014;25:1916-20. doi:10.1021/bc500443h

Hutchins BM, Kazane SA, Staflin K, Forsyth JS, Felding-Habermann B, Schultz PG, Smider VV. Site-Specific Coupling and Sterically Controlled Formation of Multimeric Antibody Fab Fragments with Unnatural Amino Acids. J Mol Biol. 2011;406:595–603. doi:10.1016/j.jmb.2011.01.011

Young DD, Jockush S, Turro NJ, Schultz PG. Synthetase polyspecificity as a tool to modulate protein function. Bioorg. Med Chem Lett. 2011;21:7502–04. doi:10.1016/j.bmcl.2011.09.108

Gorduk S. Highly soluble HOPEMP-functionalized phthalocyanines for photodynamic activity: Photophysical, photochemical and aggregation properties. J Mol Struct. 2020;1217:128478. doi:10.1016/j.molstruc.2020.128478

Eltyshev AK, Minin AS, Smoliuk LT, Benassi E, Belskaya NP. 2-Aryl-2,4-dihydro-5H-[1,2,3]triazolo[4,5-d]pyrimidin-5-ones as a New Platform for the Design and Synthesis of Biosensors and Chemosensors. Eur J Org Chem. 2020;2020:316–29. doi:10.1002/ejoc.201901582




DOI: https://doi.org/10.15826/chimtech.2021.8.3.03

Copyright (c) 2021 Alexander K. Eltyshev, Nataliya P. Belskaya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice