Cover Image

Kinetic instability of a chitosan – aspartic acid – water system as a method for obtaining nano- and microparticles

T. N. Lugovitskaya, A. B. Shipovskaya, X. M. Shipenok

Abstract


The specific electrical conductivity and dielectric constant of aqueous solutions of ionic aminopolysaccharide chitosan in L-aspartic acid were investigated. An increase of the mobility of charge carriers in these solutions was found in comparison with solutions of an individual acid. The evaluation of the kinetic stability revealed that the viscosity, electrical conductivity and dielectric constant of the chitosan – L-aspartic acid – water system decrease, while the pH value increases. It was shown that the time variation of physicochemical and electrochemical parameters is due to the effects of counterionic association with the transition of macromolecules to the ionomeric state and is accompanied by phase segregation of the polymer phase in the form of nano- and microparticles. The conducted studies carried out have shown the fundamental possibility of controlling the metastable state of this system in order to obtain nano- and microparticles.


Keywords


chitosan; L-aspartic acid; counterionic; association; nanoparticles

Full Text:

PDF

References


Li Q, Song B, Yang Z, Fan H. Electrolytic conductivity behav-iors and solution conformations of chitosan in different ac-id solutions. Carbohydr Polym. 2006;63(2):272–282. doi:10.1016/j.carbpol.2005.09.024

Bobreshova OV, Bobylkina OV., Kulintsov PI, Bobrinskaya GA, Varlamov VP, Nemtsev SV. Conductivity of aqueous so-lutions of low-molecular chitosan. Russ J Electrochem. 2004;40(7):694–697. doi:10.1023/B:RUEL.0000035250.54523.e8

Osman Z, Ibrahim Z, Arof A. Conductivity enhancement due to ion dissociation in plasticized chitosan based poly-mer electrolytes. Carbohydr Polym. 2001;44(2):167–173. doi:10.1016/S0144-8617(00)00236-8

Liu C-Y, Zhao K-S. Dielectric relaxations in chitosan solu-tion with varying concentration and temperature: analysis coupled with a scaling approach and thermodynamical functions. Soft Matter. 2010;6(12):2742–2750. doi:10.1039/B922807A

Kasaai MR, Arul J, Charlet G. Fragmentation of Chitosan by Acids. Sci World J. 2013;508540:1–11. doi:10.1155/2013/508540

Holme HK, Davidsen L, Kristiansen A, Smidsrod O. Kinetics and Mechanisms of Depolymerization of Alginate and Chi-tosan in Aqueous Solution. Carbohydr Polym. 2008;73(4):656–664. doi:10.1016/j.carbpol.2008.01.007

Il'Ina AV, Varlamov VP. Hydrolysis of chitosan in lactic acid. Appl Biochem Microbiol. 2004;40(3):300–303. doi:10.1023/B:ABIM.0000025956.98250.30

Boyko IS, Podkolodnaya OA, Lysachok SG, Shmakov SL. Vis-cous Degradation of Acidic Chitosan Solutions and its Ionic Probe Study. Izvestiya of Saratov University. Chem Biol Ecol. 2015;15(4):21–30 (in Russian). doi: 10.18500/1816-9775-2015-15-4-21-30

Philippova OE, Korchagina EV. Chitosan and its hydropho-bic derivatives: Preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A. 2012;54(7):552–572. doi:10.1134/S0965545X12060107

Chen RH, Chen WY, Wang ST, Hsu CH, Tsai ML. Changes in the Mark–Houwink hydrodynamic volume of chitosan molecues in solution of different organic acids, at different temperatures and ionic strengths. Carbohydr Polym. 2009;78(4):902–907. doi:10.1016/j.carbpol.2009.07.027

Sorlier P, Viton C, Domard A. Relation between Solution Properties and Degree of Acetylation of Chitosan: Role of Aging. Biomacromol. 2002;3(6):1336–1342. doi:10.1021/bm0256146

Fomina VI, Solonina NА, Shipovskaya АВ. Ionic Aggregation of Macromolecules as the Cause of the Kinetic (Non) Stabil-ity of Physicochemical Properties of Chitosan Solutions. Izvestiya of Saratov University. Chem Biol Ecol. 2019;19(1):22–38 (in Russian). doi: 10.18500/1816-9775-2019-19-1-22-38

Cavallaro G, Micciulla S, Chiappisi L, Lazzara G. Chitosan-based smart hybrid materials: A physico-chemical perspec-tive. J Mater Chem B. 2021;9(3):594–611. doi:10.1039/D0TB01865A

Zhou L, Ramezani H, Sun M, Xie M, Nie J, Lv S, He Y. 3D printing of high-strength chitosan hydrogel scaffolds with-out any organic solvents. Biomater Sci. 2020;8(18):5020–5028. doi:10.1039/D0BM00896F

Hu L, Sun Y, Wu Y. Advances in chitosan-based drug deliv-ery vehicles. Nanoscale. 2013;5(8):3103–3111. doi:10.1039/C3NR00338H

Jhaveri J, Raichura Z, Khan T, Momin M, Omri A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Mol. 2021;26(2):272. doi: 10.3390/molecules26020272

Garavand F, Cacciotti I, Vahedikia N, Salara AR, Tarhan Ö, Akbari-Alavijeh S., Shaddel R, Rashidinejad A, Nejatian M, Jafarzadeh S., Azizi-Lalabadi M, Khoshnoudi-Nia S, Jafari SM. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit Rev Food Scid Nutr. 2020;1–34. doi:10.1080/10408398.2020.1843133

Mohammed MA, Syeda J, Wasan KM, Wasan EK. An over-view of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharm. 2017;9(4):53. doi:10.3390/pharmaceutics9040053

Shafabakhsh R, Yousefi B, Asemi Z, Nikfar B, Mansournia MA, Hallajzadeh J. Chitosan: a compound for drug delivery system in gastric cancer-a review. Carbohydr Polym. 2020;242:116403. doi:10.1016/j.carbpol.2020.116403

Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and appli-cations of chitosan-based nanomaterials as oral delivery carriers: A review. Int J Biol Macromol. 2020;154:433–445. doi:10.1016/j.ijbiomac.2020.03.148

Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomater. 2020;10(1):140. doi:10.3390/nano10010140

Li D, Karsl B, Rubio NK, Janes M, Luo Y, Prinyawiwatkul W, Xu W. Enhanced microbial safety of channel catfish (Ic-talurus punctatus) fillet using recently invented medium molecular weight water-soluble chitosan coating. Lett Appl Microbiol. 2020;70(5):380–387. doi:10.1111/lam.13284

Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug de-livery. Drug Des Dev Ther. 2016;10:483–507. doi:10.2147/DDDT.S99651

Bagheri M, Younesi H, Hajati S, Borghe SM. Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol. 2015;80:431–444. doi:10.1016/j.ijbiomac.2015.07.022

Bodnar M, Hartmann JF, Borbely J. Preparation and charac-terization of chitosan-based nanoparticles. Biomacromol. 2005;6:2521–2527. doi:10.1021/bm0502258

Roy SG, Shirsat NS, Mishra AC, Waghulde SO, Kale MK. A review on chitosan nanoparticles applications in drug de-livery. J Pharmacogn Phytochem. 2018;7:1–4. doi: 10.22271/phyto.2018.v7.isp6.1.01

Sahariah P, Masson M. Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromol. 2017;18(11):3846–3868. doi:10.1021/acs.biomac.7b01058

Zaboon MH, Saleh AA, Al-Lami HS. Synthesis, Characteriza-tion and Cytotoxicity Investigation of Chitosan-Amino Acid Derivatives Nanoparticles in Human Breast Cancer Cell Lines. J Mex Chem Soc. 2021;65(2):178–188. doi:10.29356/jmcs.v65i2.1265

Rossi S, Vigani B, Puccio A, Bonferoni MC, Sandri G, Ferrari F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis. Mar Drugs. 2017;15(10): 319. doi:10.3390/md15100319

Yu J, Wang D, Geetha N, Khawar KM, Jogaiah S, Mujtaba M. Current trends and challenges in the synthesis and applica-tions of chitosan-based nanocomposites for plants: A re-view. Carbohydr Polym. 2021;261:117904. doi:10.1016/j.carbpol.2021.117904

Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Yáñez-Fernández J. Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. Membr. 2021;11(6):421. doi: 10.3390/membranes11060421

Divya K, Vijayan S, Nair SJ, Jisha MS. Optimization of chi-tosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. Int J Biol Macro-mol. 2019;124:1053–1059. doi:10.1016/j.ijbiomac.2018.11.185

Khaptsev Z, Lugovitskaya T, Shipovskaya A, Shipenok K. Biological activity of chitosan aspartate and its effect on germination of test seeds. IOP Conf Ser: Earth Environ Sci. 2021;723(2):022074. doi:10.1088/1755-1315/723/2/022074

Ayon NJ. Features, roles and chiral analyses of proteino-genic amino acids. AIMS Mol Sci. 2020;7(3):229–268. doi:10.3934/molsci.2020011

Sang-Aroon W, Ruangpornvisuti V. Determination of aque-ous acid-dissociation constants of aspartic acid using PCM/DFT method. Int J Quantum Chem. 2007;108(6):1181–1188. doi:10.1002/qua.21569

Lee HS, Hong J. Electrokinetic separation of lysine and as-partic acid using polypyrrole-coated stacked membrane sys-tem. J Membr Sci. 2000;169(2):277–285. doi:10.1016/S0376-7388(99)00349-X

Apelblat A, Manzurola E, Orekhova Z. Electrical conduct-ance studies in aqueous solutions with aspartic ions. J So-lut Chem. 2008;37(1):97–105. doi:10.1007/s10953-007-9223-5

Mondal S, Agam Y, Nandi R, Amdursky N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem Sci. 2020;11(13): 3547–3556. doi:10.1039/C9SC04392F

Lugovitskaya TN, Shipovskaya AB. Physicochemical proper-ties of aqueous solutions of L-aspartic acid containing chi-tosan. Russ J Gen Chem. 2017;87(4):782–787. doi:10.1134/S1070363217040193

Lugovitskaya TN, Zudina IV, Shipovskaya AB. Obtaining and Properties of L-Aspartic Acid Solutions of Chitosan. Russian J Appl Chem. 2020;93(1):80–88. doi:10.1134/S1070427220010097

Volkov EV, Filippova OE, Khokhlov AR. Dual polyelectro-lyte–ionomer behavior of poly (acrylic acid) in methanol: 1. salt-free solutions. Colloid J. 2004;66(6):663−668. doi:10.1007/s10595-005-0044-1

Kramarenko EY, Khokhlov AR. Effect of formation of ion pairs on the stability of stoichiometric block ionomer com-plexes. Polym Sci Ser A. 2007;49(9):1053–1063. doi:10.1134/S0965545X07090131

Cervera MF, Heinämäki J, de la Paz N, López O, Maunu SL, Virtanen T, Yliruusi J. Effects of spray drying on physico-chemical properties of chitosan acid salts. Aaps Pharmscitech. 2011;12(2):637–649. doi:10.1208/s12249-011-9620-3




DOI: https://doi.org/10.15826/chimtech.2021.8.4.05

Copyright (c) 2021 T. N. Lugovitskaya, A.B. Shipovskaya, X.M. Shipenok

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice