Cover Image

Modern biotechnological methods in wastewater treatment: a review

C. L. Beya, O. N. Kanwugu, M. N. Ivantsova


Given that water is the main solvent in living organisms as well as in domestic and industrial activities, it must be treated as carefully as possible after multiple uses to get a harmless water quality. To remove the undesirable materials (e.g. organic matters, surfactants, petroleum products, unwanted metals, dyes, et.), the physicochemical water treatment process is used as the common method. This method of wastewater treatment uses flocculation – coagulation technique, which consists of mixing coagulant matters with water to collect, in solid clusters, the materials in suspension by gravity. Recently, environmental scientists have suggested biotechnology methods as the main alternatives in the treatment of wastewater, as they offer more benefits to the water quality and human health than chemical methods. This paper describes and assesses some modern biotechnology methods used in wastewater treatment.


wastewater and biological treatment; bioadsorption; membrane biofilm reactor; BES

Full Text:



Rockstrom J. Balancing water for humans and nature. The New Approach in Ecohydrology. Routledge; 2004. 272 p. doi:10.4324/9781849770521

Englande AJ, Krenkel P, Shamas J. Wastewater treatment &water reclamation. Earth Syst Environm Sci. 2015;1–32. doi:10.1016%2FB978-0-12-409548-9.09508-7

Alsace-Moselle. Pourquoi traiter les eaux usées? 2017. French. Available from:

Sehar S, Naz I. Role of the biofilms in wastewater treatment. In book: Microbial Biofilms - Importance and Applications. IntechOpen: London; 2016. P. 121–144. doi:10.5772/63499

Biotechnology and its applications. Available from:

Rittmann BE. Environmental biotechnology in water and wastewater treatment. J Environ Eng. 2010;136(4). doi:10.1061/(ASCE)EE.1943-7870.0000140

Buyukgungor H, Gurel L. The role of biotechnology on the treatment of wastes. African J Biotechnol. 2009;8(25):7253–7262. doi:10.4314/ajb.v8i25

Seib MD, Berg KJ, Zitomer DH. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community. Bioresour Technol. 2016;216:446–452. doi:10.1016/j.biortech.2016.05.098

Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater. Environ Chem Lett. 2019;17:145–155. doi:10.1007/s10311-018-0785-9

Samer M. Biological and chemical wastewater treatment processes. In book: Wastewater Treatment Engineering. InTech Europe; 2015;150:1–50. doi:10.5772/61250

Mrozik A. Microbial action in wastewater and sludge. Water. 2021;13(6):846. doi:10.3390/w13060846

Mora-Ravelo SG, Alarcon A, Rocandio-Rodriguez M., Vanoye-Eligio V. Bioremediation of wastewater for reutilization in agriculture systems : a review. Appl Ecol Environ Res. 2017;15(1):33–50. doi:10.15666/aeer/1501_033050

Kumar R. Application environment biotechnology in waste-water monitoring and treatment. Incorporating health cri-teria into waste disposal & reuse standards. Delhi. 2006. Available from:

Amapex. Wastewater treatment. Innovation in wastewater treatment: biotechnology and electrochemistry. 2020. Available from:

Crini G, Lichtfouse E, Wison L, Morin-Crini N. Conventional and non conventional adsorbents for wastewater treatment. Environ Chem Lett. 2019;17(1):195–213. doi:10.1007/s10311-018-0786-8

Costa TB, Silva MGC, Vieira MGA. Recovery of rare-earth metals from aqueous solutions by bio/adsorption using nonventional materials: a review with recent studies and promising approaches in column applications. J Rare Earths. 2020;38(4):339–355. doi:10.1016/j.jre.2019.06.001

González AG, Pokrovsky OS, Santana-Casiano JM, Gonzalez-Davila M. Bioadsorption of heavy metals. In book: Prospects and Challenges in Algal Biotechnology. Singapore: Springer Nature; 2017; 233–255. doi:10.1007/978-981-10-1950-0_8

Li W, Mu B, Yang Y. Feasibility of industrial-scale treatment of dye wastewater via bioadsorption technology. Bioresour Technol. 2019;277:157–170. doi:10.1016/j.biortech.2019.01.002

Derco J, Vrana B. Biosorption of Heavy Metals. IntechOpen. (Chapter 2). 2018. doi:10.5772/intechopen.72099

Fernandez-Gonzalez R, Martin-Lara MA, Blazquez G, Perez A, Calero M. Recovering Metals from aqueous solutions by biosorption onto hydrolyzed olive cake. Water. 2019;11(12):2519. doi:10.3390/w11122519

Sahu O, Singh N. Significance of bioadsorption process on textile industry wastewater. In book: The Impact and Prospects of Green Chemistry for Textile Technology. 2019. 367–416. doi:10.1016/B978-0-08-102491-1.00013-7

Aragaw TA, Bogale FM. Biomass-based adsorbents for removal of dyes from wastewater: a review. Front Environ Sci. 2021;9:1–24. doi:10.3389/fenvs.2021.764958

Qureshi N, Annous BA, Ezeji TC, Kacher P, Maddox IS. Biofilm reactors for industrial bioconversion processes: em-ploying. Microb Cell Fact. 2005;4(24):1–21. doi:10.1186/1475-2859-4-24

Lazarova V, Manem J. Biofilm characterization and activity analysis in water and wastewater treatment. Water. 1995;29(10):2245–2245. doi:10.1016/0043-1354(95)00054-o

Melo FL. Biofilm formation and its role in fixed film processes. In book: Water Wastewater Microbiology. 2003; 337–349. doi:10.1016/b978-012470100-7/50021-2

Wang S, Parajuli S, Sivalingam V, Bakke R. Biofilm in mov-ing bed biofilm process for wastewater treatment. In book: Bacterial Biofilms. IntechOpen: London. 2019. doi:10.5772/intechopen.88520

Butler CS, Boltz J. Biofilm processes and control in water and wastewater treatment. In book: Comprehensive Water Quality and Purification. 2014;90–107. doi:10.1016/B978-0-12-382182-9.00083-9

Liu C, Wang K, Jiang J-H, Liu W-J, Wang J-Y. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Bio-chem Eng J. 2015;93:166–172. doi:10.1016/j.bej.2014.10.006

Han H, Zhang J, Chu W, Chen J, Zhou G. Research progress and prospects of marine oily wastewater treatment: a review. Water. 2019;11(12):2517. doi:10.3390/w11122517

Narayanan CM, Narayan V. Biological wastewater treatment and bioreactor design: a review. Sustain Environ Res. 2019;29(33):1–17. doi:10.1186/s42834-019-0036-1

Lu Y, Qin M, Yuan H, Abu-Reesh IM, He Z. When bioelectrochemical systems meet forward osmosis: accomplishing wastewater treatment and reuse through synergy. Water. 2015;7(1):38–58. doi:10.3390/w7010038

Future brief: Bioelectrochemical systems Wastewater treatment, bioenergy and valuable chemicals delivered by bacteria. bristol: Science Communication Unit, University of the West of England (UWE), Bristol. 2013;5. Available from:

Jain A, He Z. Cathode-enhanced wastewater treatment in bioelectrochemical systems. Clean Water. 2018;1(1):23. doi:10.1038/s41545-018-0022-x


Copyright (c) 2021 C.L. Beya, O.N. Kanwugu, M.N. Ivantsova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice