Cover Image

Benzo[de]naphtho[1,8-gh]quinolines: synthesis, photophysical studies and nitro explosives detection

Igor L. Nikonov, Igor A. Khalymbadzha, Leila К. Sadieva, Maria I. Savchuk, Ekaterina S. Starnovskaya, Dmitry S. Kopchuk, Igor S. Коvalev, Grigory А. Kim, Oleg N. Chupakhin

Abstract


A rational synthetic approach to substituted naphtho[1,8-gh]quinolines using intramolecular cyclization in the presence of potassium in the series of (naphthalen-1-yl)isoquinolines is described. The photophysical properties of the obtained compounds were studied; in particular, fluorescence emission was detected in the range 454 - 482 nm with a quantum yield of up to 54%. We also calculated the HOMO-LUMO energies and optimized molecular structures for the resulting fluorophores. Based on the results of fluorescence titration, the Stern-Volmer constants (up to 21587 M-1) and the detection limits of nitroanalytes (up to 1.4 ppm) were calculated, confirming the possibility of their use as potential chemosensors for the visual detection of nitro-containing explosives.

Keywords


benzo[de]naphtho[1,8-gh]quinolones, fluorescence, sensor, explosives

Full Text:

PDF

References


Zyryanov GV, Kopchuk DS, Kovalev IS, Nosova EV, Rusinov VL, Chupakhin ON. Chemosensors for detection of nitroaromatic compounds (explosives). Russ Chem Rev. 2014;83(9):783–819. doi:10.1070/RC2014v083n09ABEH004467

Lee JH, Rock JC, Schlautman MA, Carraway ER. Characteristics of key intermediates generated in uncatalyzed bis(2,4-dinitrophenyl) oxalate (DNPO) chemiluminescence reactions. J Chem Soc, Perkin Trans. 2002;2:1653–7. doi:10.1039/b206367k

Pandey S, Fletcher KA, Powell JR, McHale MER, Kauppila A-SM, Acree Jr WE, Fetzer JC, Dai W, Harvey RG. Spectrochim. Acta Part A. 1997;53:165–72.

Zhang P-F, Zeng J-C, Zhuang F-D, Zhao K-X, Sun Z-H, Yao Z-F, Lu Y, Wang X-Y, Wang J-Y, Pei J. Parent B2N2-perylenes with different BN orientations. Angew Chem Int Ed. 2021;60:23313–9. doi:10.1002/anie.202108519

Cui X, Zhao J, Yang P, Sun J. Zinc(II) tetraphenyltetrabenzoporphyrin complex as triplet photosensitizer for triplet–triplet annihilation upconversion. Chem Commun. 2013;49:10221–3. doi:10.1039/c3cc45843a

Hirono A, Sakai H, Hasobe T. Synthesis and electrochemical and photophysical properties of azaterrylene derivatives. Chem Asian J. 2019;14:1754–62. doi:10.1002/asia.201801410

Harwell JR, Glackin JME, Davis NJLK, Gillanders RN, Credgington D, Turnbull GA, Samuel IDW. Sensing of explosive vapor by hybrid perovskites: effect of dimensionality. APL Mater. 2020;8:071106. doi:10.1063/5.0011229

Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2:73–78. doi:10.1002/wcms.81

Tóth J, Dancsó A, Blaskó G, Tőke L, Groundwater PW, Nyerges M. 1,7-Electrocyclization reactions of stabilized α,β:γ,δ-unsaturated azomethine ylides. Tetrahedron. 2006;62:5725–35. doi:10.1016/j.tet.2006.03.088

Min L, Yang W, Weng Y, Zheng W, Wang X, Hu Y. A method for Bischler–Napieralski-type synthesis of 3,4-dihydroisoquinolines. Org Lett. 2019;21(8):2574–7. doi:10.1021/acs.orglett.9b00534

Gryko DT, Piechowska J, Gałȩzowski M. Strongly emitting fluorophores based on 1-azaperylene scaffold. J Org Chem. 2010;75:1297–30. doi:10.1021/jo902443s

Porrès L, Holland A, Palsson L-O, Monkman AP, Kemp C, Beeby A. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc. 2006;16:267–73. doi: 10.1007/s10895-005-0054-8

Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–4. doi:10.1063/1.438955

McLean AD, Chandler J. GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. Chem. Phys. 1980;72:5639–48. doi:10.1063/1.438980

Clark T, Chandrasekhar J, Schleyer PvR. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J Comp Chem. 1983;4:294–301. doi:10.1002/jcc.540040303

Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys. 1984;80:3265–9. doi:10.1063/1.447079

Mohamad M, Ahmed R, Shaari A, Goumri‑Said S. Structure‑dependent optoelectronic properties of perylene, di‑indenoperylene (DIP) isolated molecule and DIP molecular crystal. Chem Cent J. 2017;11:125. doi:10.1186/s13065-017-0352-7

Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2:21. doi:10.4103/2229-5186.79345




DOI: https://doi.org/10.15826/chimtech.2021.8.4.15

Copyright (c) 2021 Igor L. Nikonov, Igor A. Khalymbadzha, Leila К. Sadieva, Maria I. Savchuk, Ekaterina S. Starnovskaya, Dmitry S. Kopchuk, Igor S. Коvalev, Grigory А. Kim, Oleg N. Chupakhin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice