Cover Image

Phosphorous-containing copolymers loaded with silver nanoparticles for biomedical purposes

Marina Gorbunova, Larisa Lemkina, Yulia Beloglazova


tris(diethylamino)diallylaminophosphonium tetrafluoroborate (DAAP-BF4) and chloride (DAAP-Cl) with N-vinylpyrrolidone (VP) were developed. The reduction of silver ions into silver nanoparticles was achieved using NaBH4 as a reducing agent. UV-spectroscopy and scanning electron microscopy techniques were used to characterize the formation of silver nanoparticles in copolymers. The average silver particle size ranged from 10 to 20 nm, with the corresponding UV-vis absorption peak position at 395–405 nm. The AgNCs exhibited significant cytotoxic activity towards rhabdomyosarcoma and melanoma line cells and completely inhibited bacterial growth, including both Gram-positive and Gram-negative bacteria.


phosphonium salts; radical polymerization; silver nanoparticles; biocides; cytotoxic activity

Full Text:



Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. J Biol Macromol. 2012;51(4):583–589. doi:10.1016/j.ijbiomac.2012.06.033

Schultz S, Smith D, Mock J, Schultz D. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceed Nat Acad Sci USA. 2000;97(3):996–1001. doi:10.1073/pnas.97.3.996

Taton T, Mirkin C, Letsinger R. Scanometric DNA Array Detection with Nanoparticle Probes Sci. 2000;289(5485):1757–1760. doi:10.1126/science.289.5485.1757

Yguerabide J, Yguerabide E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: ii. experimental characterization. Anal Biochem. 1998;262(2):157–176. doi:10.1006/abio.1998.2760

García-Barrasa J, López-de-Luzuriaga JM, Monge M. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9(1):7–19. doi:10.2478/s11532-010-0124-x

Vegera AV, Zimon AD. Synthesis and physicochemical properties of silver nanoparticles stabilized by acid gelatine. Russ J Appl Chem. 2006;79(9):1403–1406. doi:10.1134/S1070427206090023

Gorbunova M, Lemkina L, Eroshenko D, Gileva K. N‐vinylpyrrolidone copolymers decorated with silver nanoparticles for biomedical applications. Polym Adv Tech. 2019;30(2):336–343. doi:10.1002/pat.4470

Gorbunova MN, Batueva TD, Kiselkov DM, Strelnikov VN. Silver nanocomposites based on copolymers of N,N-diallyl-N’-acetylhydrazine with N-vinylpyrrolidone. Russ Chem Bull. 2021;70(9):1706–1712. doi:10.1007/s11172-021-3273-5

Gorbunova M, Batueva T. Silver nanocomposites based on copolymers of N,N-diallyl-N’-acylhydrazines with N-vinylpyrrolidone. IOP Conf Ser Mater Sci Eng. 2020;848:012022. doi:10.1088/1757-899X/848/1/012022

Kopeikin VV, Panarin EF. Water-Soluble Nanocomposites of Zerovalent Metallic Silver with Enhanced Antimicrobial Activity. Dokl Chem. 2001;380(4–6):277–279. doi:10.1023/A:1012396522426

Kurmaz SV, Sen´ VD, Kulikov AV, Konev DV, Kurmaz VA, Balakina AA, Terent´ev AA. Polymer nanoparticles of N-vinylpyrrolidone loaded with an organic aminonitroxyl platinum (IV) complex. Characterization and investigation of their in vitro cytotoxicity. Russ Chem Bull. 2019;68:1769–1779. doi:10.1007/s11172-019-2623-z

Kurmaz SV, Fadeeva NV, Fedorov BS, Kozub GI, Emel´yanova NS, Kurmaz VA, Manzhos RA, Balakina AA, Terent´ev AA. New antitumor hybrid materials based on PtIV organic complex and polymer nanoparticles consisting of N-vinylpyrrolidone and (di)methacrylates. Mendeleev Commun. 2020:30(1):22–24. doi:10.1016/j.mencom.2020.01.007

Gorbunova MN, Vorob’eva AI. Polysulfones on the base of newdiallylaminophosphonium salts. Macromol Symp. 2010;298(1): 160–166. doi:10.1002/masy.201000044

Kabachnik MI, Medved TYa, Dyatlova NM, Arkhipova OG, Rudomino MV. Organophosphorus complexones. Uspekhi khimii. 1968;37(7):1161–1191 (in Russian).

Arkhipova OG, Kochetkova TA, Rudomino MV, Medved TYa, Kabachnik MI. Effect of aminoalkylphosphinic acids on experimental beryllium poisoning. Dokl Chem. 1964;158(5):1235–1237 (in Russian).

Gorbunova M, Lemkina L, Nechaev A. Guanidinium and phosphonium scafolds loaded with silver nanoparticles: synthesis, characterization, in vitro assessment of the antibacterial potential and toxicity. J Inorg Organomet Polym Mat. 2021;31:2218–2232. doi:10.1007/s10904-021-01941-2

Vorob’eva AI, Gorbunova MN, Sataeva FA, Muslukhov RR, Kolesov SV, Tolstikov AG, Monakov YuB. Diallylamidophosphonium salts in radical polymerization reactions. Russ J Appl Chem. 2008;81(5):840–844. doi:10.1134/S1070427208050224

Sivtsov ЕV, Lavrov NА, Nikolaev АF. The influence of the medium on the radical (co)polymerization of N-vinyl monomers. Plasticheskie massy. 2001;10:32 –42

He R, Qian X, Yin J, Zhu Z. Formation of silver dendrites under microwave irradiation. Chem Phys Lett. 2003;369(3–4):454–458. doi:10.1016/S0009-2614(02)02036-5

Anthierens T, Billiet L, Devlieghere F, Du Prez F. Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innov Food Sci Emerg. 2012;15;81–85. doi:10.1016/j.ifset.2012.02.010

Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Polym Chem. 1993;31(6);1467–1472. doi:10.1002/pola.1993.080310615

Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. J Polym Chem. 1994;32(10);1997–2001. doi:10.1002/pola.1994.080321024

Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Chem. 1993;31(6);1441–1447. doi:10.1002/pola.1993.080310611

Rahman M, Ahmad MZ, Kazmi I, Akhter S, Afzal M, Gupta G, Ahmed FJ, Anwar F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv. 2012;9(4):367–381. doi:10.1517/17425247.2012.668522


Copyright (c) 2022 Marina Gorbunova, Larisa Lemkina, Yulia Beloglazova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice