Cover Image

Prolonging effect of polyvinyl alcohol on the drug release

Anzhela Shurshina, Roman Lazdin, Elena Zakharova, Anastasiya Titlova, Elena Kulish


Polymers are currently of interest as drug delivery systems. The use of polymeric forms of medicinal substances will eliminate or reduce the disadvantages of traditional drugs. The purpose of this work was to assess the ability to prolong the action of polyvinyl alcohol in relation to the drug release when going from dilute to more concentrated solutions. It was established that an increase in the viscosity of the polymer in solution caused by an increase in its concentration results not only in a slowdown in the diffusion of drugs from the polymer solution, but also in a significant decrease in the amount of drugs firmly fixed on the polymer matrix. Since it is the adduct of the polyvinyl alcohol-drug interaction that provides the slow release of the drug from the polymer solution, a decrease in its amount leads to the fact that no enhancement of the prolonging action is observed. It is claimed that when moving from solutions to polymer films, the rate of drug release is also determined by the structure of the polymer matrix. The lower the density of the polymer film, the greater the diffusion coefficient of the drug release from the film. Thus, in the course of evaluating the ability to prolong the action of polyvinyl alcohol, it was shown that using some prolongation techniques, it is possible to achieve targeted regulation of the rate of drug release from polymer dosage forms.


polyvinyl alcohol; prolongation; drug delivery; polymer film

Full Text:



Chen M-L. Lipid excipients and delivery systems for pharma-ceutical development: a regulatory perspective. Adv Drug De-liv Rev. 2008;60:768–777. doi:10.1016/j.addr.2007.09.010

Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19. doi:10.1016/j.ijpharm.2010.03.017

Mironova MM, Kovaleva EL. Manufacturing requirements for excipients used in medicines (review). Pharm Chem J. 2015;49:340–343. doi:10.1007/s11094-015-1281-1

Thakkar HP, Desai JL. Influence of excipients on drug absorp-tion via modulation of intestinal transporters activity. Asian J Pharm. 2015;9:69–82. doi:10.4103/0973-8398.154688

Felber AE, Bayo-Puxan N, Deleavey GF, Castagner B, Damha MJ, Leroux J-C. The interactions of amphiphilic antisense oli-gonucleotides with serm proteins and their effects on in vitro silencing activity. Biomater. 2012;33:5955–5965. doi:10.1016/j.biomaterials.2012.05.019

Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011;63:1340–1351. doi:10.1016/j.addr.2011.06.013

Jeffrey K. Aronson Meyler's. Side effects of drugs: the interna-tional encyclopedia of adverse drug reactions and interactions. Elsevier Sci. 2016.

Weaver WJ, Hill RV, Weber FS, Jacob SW. The penetration and clearance of dimethyl sulfoxide from the rat eye after topical application. Ann New York Acad Sci. 1975;243:151–154. doi:10.1111/j.1749-6632.1975.tb25353.x

Siepmann J, Peppas NA. Modeling of drug release from deliv-ery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;64:163–174. doi:10.1016/j.addr.2012.09.028

Thorsteinn L. Drug stability for pharmaceutical scientists. Academic Press; 2014.

Shibata T, Yoshimura N, Kobayashi A, Ito T, Hara K, Tahara K. Emulsion-electrospun polyvinyl alcohol nanofibers as a solid dispersion system to improve solubility and control the release of probucol, a poorly water-soluble drug. J Drug Deliv Sci Technol. 2022;67:102953. doi:10.1016/j.jddst.2021.102953

Dlubek G, Bondarenko V, Pionteck J, Supej M, Wutzler A, Krause-Rehberg R. Free volume in two differently plasticized poly(vinyl chloride)s: a positron lifetime and PVT study. Polym. 2003;44:1921–1926. doi:10.1016/S0032-3861(03)00056-9

Kamcev J, Paul DR, Manning GS, Freeman BD. Ion diffusion coefficients in ion exchange membranes: significance of coun-terion condensation. Macromol. 2018;51:5519–5529. doi:10.1021/acs.macromol.8b00645

Solomevich SO, Dmitruk EI, Bychkovsky PM, Nebytov AE, Yurk-shtovich TL, Golub NV. Fabrication of oxidized bacterial cellu-lose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbo-hydr Polym. 2020;248:116745. doi:10.1016/j.carbpol.2020.116745

Anwar H, Ahmad M, Minhas MU, Rehmani S. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characteri-zation. Carbohydr Polym. 2017;166:183–194. doi:10.1016/j.carbpol.2017.02.080

Timofejeva A, D'Este M, Loca D. Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur Polym J. 2017;95:547–565. doi:10.1016/j.eurpolymj.2017.08.048

Matyjaszewski K, Möller M. Polymer science: a comprehensive reference. Elsevier Science; 2012.

Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm. 2021;600:120478. doi:10.1016/j.ijpharm.2021.120478

Kenawy ER, Kamoun EA, Eldin MS, El-Meligya MA. Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hy-drogel membranes: synthesis and characterization for biomed-ical applications. Arab J Chem. 2014;7:372–380. doi:10.1016/j.arabjc.2013.05.026

Wang Y, Shi Z, Sun Y, Wu X, Li S, Dong S, Lan T. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carri-er and drug delivery research. Des Monomers Polym. 2020;1:197–206. doi:10.1080/15685551.2020.1837442

Ebadi M, Buskaran K, Bullo S, Hussein MZ, Fakurazi S, Pas-torin G. Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alex Eng J. 2021;1:733–747. doi:10.1016/j.aej.2020.09.061

Takeuchi I, Kato Y, Makino K. Effects of polyvinyl alcohol on drug release from nanocomposite particles using poly (L-lactide-co-glycolide). J Oleo Sci. 2021;3:341–348. doi:10.5650/jos.ess20299

Shuai C, Mao Z, Lu H, Nie Y, Hu H, Peng S. Fabrication of po-rous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication. 2013;5:015014. doi:10.1088/1758-5082/5/1/015014

Sirousazar M, Kokabi M, Hassan ZM. In vivo and cytotoxic assays of a poly (vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed. 2011;22:1023–1033. doi:10.1163/092050610X497881

Mahato KK, Sabbarwal S, Misra N, Kumar M. Fabrication of polyvinyl alcohol/chitosan oligosaccharide hydrogel: physico-chemical characterizations and in vitro drug release study. In-ternational J Polym Anal Charact. 2020;5:353–361. doi:10.1080/1023666X.2020.1789382

Adelnia H, Ensandoost R, Moonshi SS, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J. 2022;164:110974. doi:10.1016/j.eurpolymj.2021.110974

Simionescu BC, Olaru M, Antochi IEB, Ursu C. PVA-based hy-brid composites with luminescent properties for drug deliv-ery. High Perform Polym. 2012;24:449–459. doi:10.1177%2F0954008312442426

Ahmed A, Niazi MBK, Jahan Z, Ahmad T, Hussain A, Pervaiz E, Janjua HA, Hussain Z. In-vitro and in-vivo study of super-absorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel mem-branes for wound dressing. Eur Polym J. 2020;130:109650. doi:10.1016/j.eurpolymj.2020.109650

Kong R, Wang J, Cheng M, Lu W, Chen M, Zhang R, Wang X. Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Internation-al. J Biol Macromol. 2020;164:1631–1639. doi:10.1016/j.ijbiomac.2020.08.016

Shurshina AS, Bazunova MV, Chernova VV, Galina AR, Lazdin RYu, Kulish EI. Influence of Supramolecular Organization on Some Characteristics of Chitosan Succinamide Films Produced From Aqueous Solutions. Polym Sci Ser A. 2020;62:422–429. doi:10.1134/S0965545X20040100

Bulatov IP, Kalinkin MI. Prakticheskoye rukovodstvo po foto-metricheskim metodam analiza [Practical guide to photomet-ric methods of analysis]. Leningrad: Chimiya; 1986. 432 p. Russian.

Mudarisova RKh, Badykova LA. Thermodynamics of the com-plexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions. Russ J Phys Chem A. 2016;90:592–595. doi:10.1134/S0036024416020199

Crank J. The Mathematics of Diffusion. Oxford University Press: London; 1975. 414 p.

Vinogradov GV, Malkin AYa. Reologiya polimerov [Rheology of polymers]. Moscow: Chimiya; 1977. 440 p. Russian.

Ferry JD. Viscoelastic Propertis of Polymers. Wiley: NewYork; 1980.

Barnes HA, Hutton JF, Walters K. An introduction to rheology. Elsevier: New York; 1989.

Malkin AYa, Isaev AI. Reologiya, Kontseptsii, Metody, Prilozheniya [Rheology: concepts, methods, applications]. SPb: Professiya; 2007. 560 p. Russian.

Schramm G. Fundamentals of Practical Rheology and Rheome-try. KolosS: Moscow; 2003.

Shurshina AS, Galina AR, Kulish EI. Behavior of a chitosan–drug system during diffusion processes. Polym Sci Ser A. 2018;60:303–310. doi:10.1134/S0965545X18030100

Shurshina A, Galina A, Elinson M, Kulish E. Peculiarities of medicinal substance release under the conditions of interface diffusion process and hydrolysis of a polymeric matrix. Chem Chem Technol. 2017;11:195–200. doi:10.23939/chcht11.02.195


Copyright (c) 2022 Anzhela Shurshina, Roman Lazdin, Elena Zakharova, Anastasiya Titlova, Elena Kulish

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice