Cover Image

Peculiarities of electrophoretic deposition and morphology of deposited films in non-aqueous suspensions of Al2O3–Al nanopowder

Elena G. Kalinina, Darya S. Rusakova, Elena Yu. Pikalova

Abstract


The paper presents the results of a comprehensive study of the electrokinetic properties of non-aqueous suspensions of the Al2O3–Al nanopowder obtained by the method of electric explosion of wires (EEW) with 0.3 wt.% of metallic aluminum in its composition. The dependence of zeta potential on the concentration of the Al2O3–Al suspension is revealed. The nature of long-term changes in zeta potential and pH in suspensions is established. Appearance of bubbles in the deposited coatings due to the interaction of metallic aluminum particles with the liquid suspension medium during electrochemical reactions on the electrodes is defined as the main feature of the electrophoretic deposition (EPD) process in the Al2O3–Al suspensions. The influence of the suspension preparation method on the deposited coatings’ morphology is demonstrated.

Keywords


electrophoretic deposition; electric explosion of wire; alumina weakly aggregated nanopowder; non-aqueous suspension; zeta potential

Full Text:

PDF

References


Rakshit R, Das A. A review on cutting of industrial ceramic materials. Precis Eng. 2019;59:90–109. doi:10.1016/j.precisioneng.2019.05.009

Zhang T, Zeng Z, Huang H, Hing P, Kilner J. Effect of alumi-na addition on the electrical and mechanical properties of Ce0.8Gd0.2O2−δ ceramics. Mat Lett. 2002;57(1):124–129. doi:10.1016/s0167-577x(02)00717-6

Sal’nikov VV, Pikalova EYu, Proshina AV, Kuz’mina LA. Electrophysical properties of Ce0.8Gd0.2O2−δ + x mol % Al2O3 solid composite electrolytes. Russ J Electrochem. 2011;47(9):1049–1055. doi:10.1134/S102319351108012X

Frolov EI, Notina PV, Zvonarev SV, Il'ina EA, Churkin VYu, Synthesis and Research of Alumina Ceramics Properties. Chim Techno Acta. 2021;8(1):20218102. doi:10.15826/chimtech.2021.8.1.02

Korhonen H, Syväluoto A, Leskinen JTT, Lappalainen R. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition. Opt Laser Technol. 2018;98:373–384. doi:10.1016/j.optlastec.2017.07.050

Ogita Y, Saito N. Formation of alumina film using alloy catalyzers in catalytic chemical vapor deposition. Thin Sol-id Films. 2015;575:47–51. doi:10.1016/j.tsf.2014.10.022

Hu S, Li W, Finklea H, Liu X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci. 2020;276:102102. doi:10.1016/j.cis.2020.102102

Pikalova EYu, Kalinina EG. Electrophoretic deposition in the solid oxide fuel cell technology: Fundamentals and re-cent advances. Renew Sust Energ Rev. 2019;116:109440. doi:10.1016/j.rser.2019.109440

Kalinina EG, Pikalova EYu. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solu-tions and development prospects. Russ Chem Rev. 2019;88(12):1179. doi:10.1070/RCR4889

Pikalova EY, Kalinina EG, Place of electrophoretic deposi-tion among thin-film methods adapted to the solid oxide fuel cell technology: a short review. Int J Energy Prod Mgmt. 2019;4(1):1–27. doi:10.2495/EQ-V4-N1-1-27

Koelmans H, Overbeek JTG. Stability and electrophoretic deposition of suspensions in non-aqueous media. Discuss Faraday Soc. 1954;18:52–63. doi:10.1039/DF9541800052

Dukhin SS, Derjaguin BV. Surface and Colloid Sciences. New York: Wiley-Interscience; 1974. 335 p.

Van der Biest OO, Vandeperre LJ. Electrophoretic deposition of materials. Annu Rev Mater Sci. 1999;29:327–352. doi:10.1146/annurev.matsci.29.1.327

Derjaguin BV, Landau LD. Theory of the Stability of Strong-ly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physico-chim. URSS. 1941;14:633–662.

Verwey EJW, Overbeek JThG. Theory of the stability of lyo-phobic colloids. Amsterdam: Elsevier; 1948. 205 p.

Henry DC. The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proc R Soc Lond. 1931;133(821):106–29. doi:10.1098/rspa.1931.0133

Hunter RJ. Zeta Potential in Colloid Science: Principles and Applications. Colloid science. London: Academic Press; 1981. 391 p.

Novak S, König K. Fabrication of alumina parts by electro-phoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 2009;35(7):2823–2829. doi:10.1016/j.ceramint.2009.03.033

Song G, Xu G, Quan Y, Davies PA. Uniform design for the optimization of Al2O3 nanofilms produced by electrophoret-ic deposition. Surf Coat Technol. 2016;286:268–278. doi:10.1016/j.surfcoat.2015.12.039

Kotov YuA, Beketov IV, Azarkevich EI, Murzakaev AM. Syn-thesis of Nanometer-Sized Powders of Alumina Containing Magnesia. In: Proceedings of the Ninth CIMTEC-World Ce-ramic Congress “Ceramics: Getting into the 2000s”, 1998 Jun 14–19; Florence, Italy. p. 277–284.

Kotov YuA. Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanopart. Res. 2003;5:539–550. doi:10.1023/B:NANO.0000006069.45073.0b

Kotov YuA. The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders. Nano-technol. Russia. 2009;4:415–424. doi:10.1134/S1995078009070039

Beketov IV, Safronov AP, Medvedev AI, Murzakaev AM, Zhidkov IS, Cholah SO, Maximov AD, Encapsulation of Ni nanoparticles with oxide shell in vapor condensation. Chim. Techno Acta. 2019;6(3):93–103. doi:10.15826/chimtech.2019.6.3.02

Safronov AP, Kalinina EG, Smirnova TA, Leiman DV, Bag-azeev AV. Self-stabilization of aqueous suspensions of alu-mina nanoparticles obtained by electrical explosion. Russ J Phys Chem А. 2010;84:2122–2127. doi:10.1134/S0036024410120204

Kalinina EG, Rusakova DS, Kaigorodov AS, Farlenkov AS, Safronov AP. Formation of bulk alumina ceramics by elec-trophoretic deposition from nanoparticle suspensions. Russ J Phys Chem A. 2021;95(8):1519–1528. doi:10.1134/S0036024421080148

Kalinina EG, Rusakova DS, Pikalova EYu, Electrophoretic deposition of coatings and bulk compacts using magnesi-um-doped aluminum oxide nanopowders. Chim Techno Ac-ta. 2021;8(2):20218206. doi:10.15826/chimtech.2021.8.2.06

Mostafapour L, Baghshahi S, Rajabi M, Siahpoosh SM, Esfehani F, Kinetic evaluation of YSZ/Al2O3 nanocomposite coatings fabricated by electrophoretic deposition on a nick-el-based superalloy. Process Appl Ceram. 2021;15(1):1–10. doi:10.2298/PAC2101001M

Ahmadi M, Aghajani H, Structural characterization of YSZ/Al2O3 nanostructured composite coating fabricated by electrophoretic deposition and reaction bonding. Ceram Int. 2018;44(6):5988–5995. doi:10.1016/j.ceramint.2017.12.185

Kalinina EG, Efimov AA, Safronov AP, Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders. Inorg Mater. 2016;52(12):1301–1306. doi:10.1134/s0020168516110054

Sorokina L, Ryazanov R, Shaman Yu, Lebedev E, Electropho-retic deposition of Al-CuOx thermite materials on patterned electrodes for microenergetic applications. E3S Web Conf. 2021;239:00015. doi:10.1051/e3sconf/202123900015

Carrique F, Arroyo FJ, Jimenez ML, Delgado ÁV. Influence of Double-Layer overlap on the electrophoretic mobility and dc conductivity of a concentrated suspension of spherical particles. J Phys Chem B. 2003;107(14):3199–3206. doi:10.1021/jp027148k

Liu J, Wang LQ, Bunker BC, Graff GL, Virden JW, Jones RH. Effect of hydrolysis on the colloidal stability of fine alumi-na suspensions. Mater Sci Eng A. 1995;204(1-2):169–175. doi:10.1016/0921-5093(95)09955-7

Besra L, Uchikoshi T, Suzuki TS, Sakka Y. Experimental verification of pH localization mechanism of particle con-solidation at the electrode/solution interface and its appli-cation to pulsed DC electrophoretic deposition (EPD). J Eur Ceram Soc. 2010;30(5):1187–1193. doi:10.1016/j.jeurceramsoc.2009.07.004

Ammam M. Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2012;2:7633–7646. doi:10.1039/c2ra01342h




DOI: https://doi.org/10.15826/chimtech.2022.9.2.07

Copyright (c) 2022 Elena G. Kalinina, Darya S. Rusakova, Elena Yu. Pikalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)
Copyright Notice