Cover Image

Variability of pathogenicity factors representative of the human microbiome under the influence of γ-Fe2O3 nanoparticles

Lyubov Kokorina, Yana V. Chernyavskaya, Tatiana P. Denisova, Elena V. Simonova, Alexander P. Safronov, Galina V. Kurlyandskaya

Abstract


Biomedical applications of nanoparticles require deep understanding of their interaction with normal human microflora. Previously, the toxic and mutagenic properties of iron oxide nanoparticles as well as their effect on the growth and morphology of the microflora were extensively investigated. However, the studies related to the variability of microbial pathogenicity factors induced by iron oxide nanoparticles are very limited. Meanwhile, this characteristic of microbes is genetically determined and is important for their survival and distribution in the human body. Therefore, pathogenicity factors are significant indicators of the experimental studies. In this work, the effect of the presence of Fe2O3 nanoparticles obtained by laser target evaporation (LTE) on selected enzymes that demonstrate invasion and aggression factors was evaluated for three reference strains of Candida albicans, Staphylococcus aureus, and Escherichia coli. It was found that the presence of LTE Fe2O3 nanoparticles supplied in the form of water-based suspensions does not induce changes of the above-mentioned parameters.

Keywords


laser target evaporation; iron oxide nanoparticles; magnetic nanoparticles; biomedical applications; eukaryotic and prokaryotic microorganisms; normal human microflora; pathogenicity factors

Full Text:

PDF

References


Kurlyandskaya GV, Blyakhman FA, Makarova EB, Buznikov NA, Safronov AP, Fadeyev FA, Shcherbinin SV, Chlenova AA. Functional magnetic ferrogels: from biosensors to regenerative medicine. AIP Adv. 2020;10:12512. doi:10.1063/9.0000021

Zamani Kouhpanji MR, Stadler BJH. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: a review. Sens. 2020;20(9):2554. doi:10.3390/s20092554

Zhigachev AO, Golovin YuI, Klyachko NL. A new physical method of localization of nanomechanical action of magnetic nanoparticles controlled by low-frequency magnetic field on mechanically sensitive biochemical systems. Adv Mater Technol. 2018;3:63–69. doi:10.17277/AMT.2018.03.PP.063-069

Sokolov IL. In vitro and in vivo study of the behavior of hybrid nanostructures with positive magnetic susceptibility for biomaging and targeted drug delivery [dissertation]. Moscow, Russia: Moscow Institute of Physics and Technology (National Research University); 2019. 134 р.

Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan J, Phan M-H. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys. 2016;119:083904. doi:10.1063/1.4942618

Khawja Ansari SAM, Ficiara E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F. Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Mater. 2019;12:465. doi:10.3390/ma12030465

Aphesteguy JC, Jacobo SE, Schegoleva NN, Kurlyandskaya GV. Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J Alloy Compd. 2010;495:509–512. doi:10.1016/j.jallcom.2009.10.037

Goiriena-Goikoetxea M, García-Arribas A, Rouco M, Svalov AV, Barandiaran JM. High-yield fabrication of 60 nm Perm-alloy nanodiscs in well-defined magnetic vortex state for biomedical applications. Nanotechnol. 2016;27:175302. doi:10.1088/0957-4484/27/17/175302

Kurlyandskaya GV, Safronov AP, Shcherbinin SV, Beketov IV, Blyakhman FA, Makarova EB, Korch MA, Svalov AV. Magnetic nanoparticles obtained by electrophysical tech-nique: focus on biomedical applications. Phys Solid State. 2021;63:1447–1461. doi:10.1134/S1063783421090237

Bazylinski DA, Frankel RB. Magnetosome formation in pro-karyotes. Nat Rev Microbiol. 2004;2:217–230. doi:10.1038/nrmicro842

Grossman JH, McNeil SE. Nanotechnology in Cancer Medicine. Phys Today. 2012;65:38. doi:10.1063/PT.3.1678

Denisova TP, Simonova EV, Kokorina LA, Maximova EN, Samatov OV. Heterogeneity of population of microorganisms grown in presence of iron oxide maghemite nanoparticles. EPJ Web Conf. 2018;185:10002. doi:10.1051/epjconf/201818510002

Babushkina IV, Korshunov GV, Puchinyan DM, Vlasova SP, Fedorova AV, Goroshinskay IA, et al. Antibacterial effect of iron and copper nanoparticles on Pseudomonas aeruginosa. Izvestiya vuzov. The North Caucasus Reg. Nat Sci. 2010;2:82–84. Available from: https://cyberleninka.ru/article/n/antibakterialnoe-deystvie-nanochastits-zheleza-i-medi-na-klinicheskie-shtammy-rseudomonas-aeruginosa, Accessed on 10 May 2022.

Durnev AD. Assessment of the genotoxicity of nanoparticles when used in medicine. Hygiene Sanit. 2014;93(2):76–83. Available from: https://cyberleninka.ru/article/n/otsenka-genotoksichnosti-nanochastits-pri-ispolzovanii-v-meditsine, Accessed on 7 May 2022.

Mikhailova EA, Mironov AYu, Fomina MV, Kirgizova SB, Aznabayeva LM, Zherebyatyeva OO. The ability of Escherichia coli to form biofilms in the presence of aluminum oxide nanoparticles. Clin Lab diagn. 2017;6:381–384. Available from: https://cyberleninka.ru/article/n/sposobnost-escherichia-coli-formirovat-bioplenki-v-prisutstvii-nanochastits-oksida-alyuminiya, Accessed on 7 May 2022.

Kosyan DB, Makaeva AM, Rusakova EA. Biological effects of silicon dioxide nanoparticles. Mod Probl Sci Educ. 2018;6. Available from: https://science-education.ru/ru/article/view?id=28276, Accessed on 7 May 2022.

Castro-Gamboa S, Garcia-Garcia MR, Piñon Zarate G, Rojas-Lemus M, Jarquin-Yañez K, Angel Herrera-Enriquez M, et al. Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype. J Immunotoxicol. 2019;16(1):54–62. doi:10.1080/1547691X.2019.1584652

Abramenko NB. Investigation and modeling of the toxic effect of silver nanoparticles on hydrobionts [dissertation]. Moscow, Russia: State University named after M.V. Lomonosov; 2017. 122 p.

Zaitseva NV, Zemlyanova MA, Stepankov MS, Ignatova AM. Assessment of toxicity and potential danger of aluminum oxide nanoparticles for human health. Human Ecol. 2018;5:9–15. Available from: https://cyberleninka.ru/article/n/otsenka-toksichnosti-i-potentsialnoy-opasnosti-nanochastits-oksida-alyuminiya-dlya-zdorovya-cheloveka, Accessed on 7 May 2022.

Candida albicans (Robin) Berkhout. Available from: https://www.atcc.org/products/10231-mini-pack, Accessed on 10 May 2022.

Staphylococcus aureus subsp. aureus Rosenbach. Available from: https://www.atcc.org/products/25923, Accessed on 10 May 2022.

Escherichia coli (Migula) Castellani and Chalmers. https://www.atcc.org/products/25922, Accessed on 10 May 2022.

Gruber IM, Egorova NB, Astashkina EA. Pathogenicity fac-tors of Staphylococcus aureus their role in the infectious process and in the formation of post-vaccination immunity. Epidemiology and vaccination prevention. 2016;15(3):72–82. doi:10.31631/2073-3046-2016-15-3-72-82.

Ivanova EI, Popkova SM, Dzhioev YP, Dolgikh VV, Rakova EB, Bukharova EV. Detection of some genes encoding pathogenicity factors in typical isolates of Escherichia coli. Acta Biomed Sci. 2014;5(99):89–94. Available from: https://cyberleninka.ru/article/n/detektsiya-nekotoryh-genov-kodiruyuschih-faktory-patogennosti-u-tipichnyh-izolyatov-escherichia-coli, Accessed on 10 May 2022.

Haitovich AB, Gafarova AS. Pathogenicity factors of Candida albicans and determination of their gene determinants. TMBV. 2016;3:121–126. Available from: https://cyberleninka.ru/article/n/faktory-patogennosti-candida-albicans-i-opredelenie-ih-gennyh-determinant, Accessed on 10 May 2022.




DOI: https://doi.org/10.15826/chimtech.2022.9.4.01

Copyright (c) 2022 Lyubov A. Kokorina, Yana V. Chernyavskaya, Tatiana P. Denisova, Elena V. Simonova, Alexander P. Safronov, Galina V. Kurlyandskaya

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)