Cover Image

To the possibility of experimental estimation of the diffusion spinodal position of binary mixture with LCST via pulsed heating method

Alexander A. Igolnikov, Aleksandr D. Yampol'skiy

Abstract


In this paper, we present new data on non-stationary heating of a platinum wire probe, immersed in a binary partially-miscible liquid. A pressure value and a mass fraction of the a polymer in the mixture were the experimental parameters. The characteristic heating time was from 5 to 15 ms. The object of the research was the water/polypropylene glycol-425 (PPG-425) mixture having lower critical solution temperature (LCST). The position of the diffusion spinodal was estimated based on the obtained data on the liquid-liquid binodal in the framework of the Flory-Huggins approximation. An experimental technique to estimate the position of the spinodal of two-component mixtures with LCST on the scale of the mixture component ratio was developed. It was shown that the method of isobaric pulse heating can be used for this purpose. This representation is based on the threshold change in the heat transfer pattern when crossing the phase coexistence curve and the diffusion spinodal.

Keywords


diffusion spinodal; phase coexistence line; partially-miscible mixture; pulse heating; Flory-Huggins approximation

Full Text:

PDF

References


Sengers JL. How Fluids Unmix: Discoveries by the School of Van Der Waals and Kamerlingh Onnes. Royal Netherlands Academy of Arts and Sciences: Amsterdam; 2002. 302 p.

Andreyeva VM, Tager AA, Tyukova IS, Golenkova LF. Study of the spinoidal mechanism of phase separation of polystyrene solutions in decalin. Polym Sci USSR. 1977;19(11):3005–3013. doi:10.1016/0032-3950(77)90322-7

Tager AA. Thermodynamics of concentrated polymer solutions. Polym Sci USSR. 1971;13(2):531–552. doi:10.1016/0032-3950(71)90020-7

Tager AA, Anikeyeva AA, Andreyeva VM, Gumarova TY, Chernoskutova LA. Phase equilibrium and light scattering in polymer solutions. Polymer Sci USSR. 1968;10(7):1926–1940. doi:10.1016/0032-3950(68)90387-0

Volosnikov DV, Povolotskiy II. Possibilities of heat pulse probing method for determining the phase diagram of partially-miscible liquid mixtures. J Phys Conf Ser. 2020;1677:012100. doi:10.1088/1742-6596/1677/1/012100

Skripov PV, Starostin AA, Volosnikov DV, Zhelezny VP. Comparison of thermophysical properties for oil/refrigerant mixtures by use of pulse heating method. Int J Phys Refrig. 2003;26(8):721–728. doi:10.1016/S0140-7007(02)00163-9

Rowlinson JS. The Theory of regular solutions. Proc Royal Soc A Math Phys Eng Sci. 1942;214(1117):192–206. doi:10.1098/rspa.1952.0161

Flory PJ. Thermodynamics of high polymer solutions. J Chem Phys. 1942;10(1):51–61. doi:10.1063/1.1723621

Huggins ML. Some properties of solutions of long-chain compounds. J Chem Phys. 1942;46(1):151–158. doi:10.1021/j150415a018

Igolnikov AA, Rutin SB, Skripov PV. Investigation of binary liquids in unstable states—an experimental approach. Liquids. 2021;1:36–46. doi:10.3390/liquids1010003

Volosnikov DV, Povolotskiy II, Igolnikov AA, Vasin MG, Son LD, Skripov PV. Intensification of heat transfer during spinodal decomposition of a superheated aqueous oligomer solution. J Phys Conf Ser. 2021;1787:012032. doi:10.1088/1742-6596/1787/1/012032

Rutin SB. An voltage-controlled precision electronic power regulator. Rev Sci Instr. 2021;92:124708. doi:10.1063/5.0071683

Rutin SB. An apparatus for studying nonstationary heat exchange in liquid media. Instr Exp Tech. 2021;64:781–784. doi:10.1134/S0020441221050109

Rutin SB, Igolnikov AA, Skripov PV. Title High-power heat release in supercritical water: insight into the heat transfer deterioration problem. J Eng Thermophys. 2020;29:67–74. doi:10.1134/s1810232820010063

Skripov PV, Igolnikov AA, Rutin SB, Melkikh AV. Heat transfer by unstable solution having the lower critical solution temperature. Int J Heat Mass Transf. 2022;184:122290. doi:10.1016/j.ijheatmasstransfer.2021.122290

Taniguchi Y, Suzuki K, Enomoto T. The effect of pressure on the cloud point of aqueous polymer solutions. J Coll Int Sci. 1974;46(3):511–517. doi:10.1016/0021-9797(74)90061-7




DOI: https://doi.org/10.15826/chimtech.2022.9.4.08

Copyright (c) 2022 Alexander A. Igolnikov, Aleksandr D. Yampol'skiy

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)