Cover Image

Phosphorus-doped protonic conductors based on BaLanInnO3n+1 (n = 1, 2): applying oxyanion doping strategy to the layered perovskite structure

Nataliia Tarasova, Anzhelika Galisheva

Abstract


The creation of highly efficient and eco-friendly energy sources such as hydrogen energy systems is one of main vectors for the sustainable development of human society. Proton-conducting ceramic materials can be applied as one of the main components of such hydrogen- fueled electrochemical devices, including protonic ceramic fuel cells. The oxyanion doping strategy is a promising approach for improving transport properties of proton-conducting complex oxides. In this paper, this strategy was applied to proton-conducting layered perovskites for the first time. The phosphorus-doped protonic conductors based on BaLanInnO3n+1 (n = 1, 2) were obtained, and their electrical conductivity was thoroughly investigated. It was found that the phosphorous doping leads to an increase in the electrical conductivity values by ~0.7 orders of magnitude.

Keywords


layered perovskite; oxyanion doping; phosphorus doping; proton conductivity; BaLaInO4; BaLa2In2O7

Full Text:

PDF

References


Panwar NL, Kaishik SC, Kothari S. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. Role of renewable energy sources in environmental protection: A review. Renew Sustain Energy Rev. 2011;15(3):1513–1524. doi:10.1016/j.rser.2010.11.037

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303. doi:10.1038/nature11475

Dincer I, Rosen MA. Sustainability aspects of hydrogen and fuel cell systems. Int J Sustain Energy Dev. 2011;15(2):137–146. doi:10.1016/j.esd.2011.03.006

Branco H, Castro R, Lopes AS. Battery energy storage systems as a way to integrate renewable energy in small iso-lated power systems. Int J Sustain Energy Dev. 2018;43:90–99. doi:10.1016/j.esd.2018.01.003

Malerba D. Poverty-energy-emissions pathways: Recent trends and future sustainable development goals. Int J Sus-tain Energy Dev. 2019;49:109–124. doi:10.1016/j.esd.2019.02.001

Buonomano A, Barone G, Forzano C. Advanced energy technologies, methods, and policies to support the sustainable development of energy, water and environment systems. Energy Rep. 2022;8:4844–4853. doi:10.1016/j.egyr.2022.03.171

Olabi AG, Abdelkareem MA. Renewable energy and climate change. Renew Sustain Energy Rev. 2022;158:112111. doi:10.1016/j.rser.2022.112111

Østergaard PA, Duic N, Noorollahi Y, Mikulcic H, Kalogirou S. Sustainable development using renewable energy technology. Renew Energy. 2020;146:2430–2437. doi:10.1016/j.renene.2019.08.094

International Energy Agency. The Future of Hydrogen: Seizing today’s opportunities. OECD. 2019. doi:10.1787/1e0514c4-en

Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers Manag. 2018;165:602–627. doi:10.1016/j.enconman.2018.03.088

Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: An overview. Int J Hydrog Energy. 2020;45(7):3847–3869. doi:10.1016/j.ijhydene.2019.12.059

Arsad AZ, Hannan MA, Al-Shetwi AQ, Mansur M, Muttaqi KM, Dong ZY, Blaabjerg F. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. Int J Hydrog Energy. 2022;47(39):17285–17312. doi:10.1016/j.ijhydene.2022.03.208

Hossain S, Abdalla AM, Jamain SNB, Zaini JH, Azad AK. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sustain Energy Rev. 2017;79:750–764. doi:10.1016/j.rser.2017.05.147

Kim J, Sengodan S, Kim S, Kwon O, Bu Y, Kim G. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage. Renew Sustain Energy Rev. 2019;109:606–618. doi:10.1016/j.rser.2019.04.042

Zhang W, Hu YH. Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices. Energy Sci Eng. 2021;9(7):984–1011. doi:10.1002/ese3.886

Meng Y, Gao J, Zhao Z, Amoroso J, Tong J, Brinkman KS. Review: recent progress in low-temperature proton-conducting ceramics. J Mater Sci. 2019;54:9291–9312. doi:10.1007/s10853-019-03559-9

Medvedev D. Trends in research and development of protonic ceramic electrolysis cells. Int J Hydrog Energy. 2019;44(49):26711–26740. doi:10.1016/j.ijhydene.2019.08.130

Medvedev DA. Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electro-chemical purposes. Curr Opin Green Sustain Chem. 2021;32:100549. doi:10.1016/j.cogsc.2021.100549

Zvonareva I, Fu X-Z, Medvedev D, Zhao Z. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy Environ Sci. 2022;15:439–465. doi:10.1039/D1EE03109K

Shim JH. Ceramics breakthrough. Nature Energy. 2018;3:168–169. doi:10.1038/s41560-018-0110-7

Bello IT, Zhai S, He Q, Cheng C, Dai Y, Chen B, Zhang Y, Ni M. Materials development and prospective for protonic ceramic fuel cells. Int J Energy Res. 2021;46(3):2212–2240. doi:10.1002/er.7371

Irvine J et al. Roadmap on inorganic perovskites for energy applications. J Phys Energy. 2021;3:031502. doi:10.1088/2515-7655/abff18

Chiara A, Giannici F, Pipitone C, Longo A, Aliotta M, Gam-bino M, Martorana A. Solid-Solid Interfaces in Protonic Ceramic Devices: A Critical Review. ACS Appl Mater Interfaces. 2020;12:55537–55553. doi:10.1021/acsami.0c13092

Cao J, Ji Y, Shao Z. New Insights into the Proton-Conducting Solid Oxide Fuel Cells. J Chin Ceram Soc. 2021;49:83–92. doi:10.14062/j.issn.0454-5648.20200390

Bello IT, Zhai S, Zhao S, Li Z, Yu N, Ni M. Scientometric review of proton-conducting solid oxide fuel cells. Int J Hydrog Energy. 2021;46(75):37406–37428. doi:10.1016/j.ijhydene.2021.09.061

Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981;3–4:359–363. doi:10.1016/0167-2738(81)90113-2

Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J Power Sources. 1982;7(3):293–301. doi:10.1016/0378-7753(82)80018-9

Tarasova N, Colomban P, Animitsa I. The short-range structure and hydration process of fluorine-substituted double perovskites based on barium-calcium niobate Ba2CaNbO5.5. J Phys Chem Solids. 2018;118:32–39. doi:10.1016/j.jpcs.2018.02.049

Fop S, McCombie KS, Wildman EJ, Skakle MS, Irvine JTS, Connor PA, Savaniu C, Ritter C, Mclaughlin AC. High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nature Mater. 2020;19:752–757. doi:10.1038/s41563-020-0629-4

Yashima M, Tsujiguchi T, Sakuda Y, Yasui Y, Zhou Y, Fujii K, Torii S, Kamiyama T, Skinner SJ. High oxide-ion conductivity through the interstitial oxygen site in Ba7Nb4MoO20-based hexagonal perovskite related oxides. Nature Comm. 2021;12:556. doi:10.1038/s41467-020-20859-w

Wang Y, Wang H, Liu T, Chen F, Xia C. Improving the chemical stability of BaCe0.8Sm0.2O3−δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochem Comm. 2013;28:87–90. doi:10.1016/j.elecom.2012.12.012

Zhou H, Dai L, Jia L, Zhu J, Li Y, Wang L. Effect of fluorine, chlorine and bromine doping on the properties of gadolinium doped barium cerate electrolytes. Int J Hydrog Energy. 2015; 40(29):8980–8988. doi:10.1016/j.ijhydene.2015.05.040

Tarasova N, Animitsa I. The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba2In2O5. J Alloys Compd. 2018;739:353–359. doi:10.1016/j.jallcom.2017.12.317

Ushakov AE, Merkulov OV, Markov AA, Patrakeev MV, Leonidov IA. Ceramic and transport properties of halogen-substituted strontium ferrite. Ceram Int. 2018;44(10):11301–11306. doi:10.1016/j.ceramint.2018.03.177

Liu J, Jin Z, Miao L, Ding J, Tang H, Gong Z, Peng R, Liu W. A novel anions and cations co-doped strategy for developing high-performance cobalt-free cathode for intermediate-temperature proton-conducting solid oxide fuel cells. Int J Hydrog Energy. 2019;44(21):11079–11087. doi:10.1016/j.ijhydene.2019.03.001

Shin JF, Orera A, Apperley DC, Slater PR. Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. J Mater Chem. 2011;21(3):874–879. doi:10.1039/c0jm01978j

Hancock CA, Porras-Vazquez JM, Keenan PJ, Slater PR. Oxy-anions in perovskites: from superconductors to solid oxide fuel cells. Dalton Trans. 2015;44(23):10559. doi:10.1039/c4dt03036b

Tarasova N, Animitsa I. AIILnInO4 with Ruddlesden-Popper structure for electrochemical applications: relationship between ion (oxygen-ion, proton) conductivity, water uptake and structural changes. Materials. 2022;15(1):114. doi:10.3390/ma15010114

Fujii K, Shiraiwa M, Esaki Y, Yashima M, Hoshikawa A, Ishigaki T, Hester JR. New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4. Chem Mater. 2014;26(8):2488–2491. doi:10.1021/cm500776x

Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S. Improved oxide-ion conductivity of NdBaInO4 by Sr doping. J Mater Chem A. 2015;3(22):11985–11990. doi:10.1039/c5ta01336d

Ishihara T, Yan Y, Sakai T, Ida S. Oxide ion conductivity in doped NdBaInO4. Solid State Ion. 2016;288:262–265. doi:10.1016/j.ssi.2016.01.011

Yang X, Liu S, Lu F, Xu J, Kuang X. Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4 Based Mixed Conductors. J Phys Chem C, 2016;12:6416–6426. doi:10.1021/acs.jpcc.6b00700

Fujii K, Yashima M. Discovery and development of BaNdInO4 - A brief review. J Ceram Soc Japan. 2018;126(10):852–859. doi:10.2109/jcersj2.18110

Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogni LV, Skinner SJ. Protonic Conduction in the BaNdInO4 Structure Achieved by Acceptor Doping. Chem Mater. 2021;33(6):2139–2146. doi:10.1021/acs.chemmater.0c04828

Kato S, Ogasawara M, Sugai M, Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La1-xSr1+xInO4-d. Solid State Ion. 2002;149(1–2):53–57. doi:10.1016/S0167-2738(02)00138-8

Troncoso L, Alonso JA, Aguadero A. Low activation energies for interstitial oxygen conduction in the layered perov-skites La1+xSr1-xInO4+d. J Mater Chem A. 2015;3(34):17797–17803. doi:10.1039/c5ta03185k

Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A. Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1−xBxO4+δ system (B=Zr, Ti). Solid State Ionics. 2015;282:82–87. doi:10.1016/j.ssi.2015.09.014

Troncoso L, Mariño C, Arce MD, Alonso JA. Dual oxygen defects in layered La1.2Sr0.8-xBaxInO4+d (x = 0.2, 0.3) oxide-ion conductors: a neutron diffraction study. Mater. 2019;12(10):1624. doi:10.3390/ma12101624

Troncoso L, Arce MD, Fernández-Díaz MT, Mogni LV, Alonso JA. Water insertion and combined interstitial-vacancy oxy-gen conduction in the layered perovskites La1.2Sr0.8-xBaxInO4+d. New J Chem. 2019;43(15):6087–6094. doi:10.1039/C8NJ05320K

Tarasova N, Galisheva A, Animitsa I, Korona D, Kreimesh H, Fedorova I. Protonic Transport in Layered Perovskites BaLanInnO3n+1 (n = 1, 2) with Ruddlesden-Popper Structure. Appl Sci. 2022;12(8):4082. doi:10.3390/app12084082

Tarasova N, Animitsa I, Galisheva A. Electrical properties of new protonic conductors Ba1+хLa1–хInO4–0.5х with Ruddlesden-Popper structure. J Solid State Electrochem. 2020;24:1497–1508. doi:10.1007/s10008-020-04630-1

Tarasova N, Galisheva A, Animitsa I. Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping. Ionics. 2020;26:5075–5088. doi:10.1007/s11581-020-03659-6

Tarasova N, Galisheva A, Animitsa I. Ba2+/Ti4+- codoped layered perovskite BаLaInO4: the structure and ionic (O2−, H+) conductivity. Int J Hydrog Energy. 2021;46(32):16868–16877. doi:10.1016/j.ijhydene.2021.02.044

Tarasova NA, Galisheva AO, Animitsa IE, Lebedeva EL. Oxy-gen-Ion and Proton Transport in Sc-Doped Layered Perovskite BaLaInO4. Russ J Electrochem. 2021;57(10):1008–1014. doi:10.1134/S1023193521080127

Tarasova N, Galisheva A, Animitsa I, Anokhina I, Gilev P, Cheremisina P. Novel mid-temperature Y3+ → In3+ doped proton conductors based on the layered perovskite BaLaInO4. Ceram Int. 2022;48(11):15677–15685. doi:10.1016/j.ceramint.2022.02.102

Tarasova N, Galisheva A, Animitsa I, Korona D, Davletbaev K. Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2+, H+) conductivity. Int J Hydrog Energy. 2022;47(44):18972–18982. doi:10.1016/j.ijhydene.2022.04.112

Tarutin A, Lyagaeva J, Medvedev D, Bi L, Yaremchenko A. Recent advances in layered Ln2NiO4+δ nickelates: funda-mentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A. 2021;9(1):154–195. doi:10.1039/D0TA08132A

Tarutin A, Gorshkov Yu, Bainov A, Vdovin G, Vylkov A, Lya-gaeva J, Medvedev D. Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells. Ceram Int. 2020;46(15):24355–24364. doi:10.1016/j.ceramint.2020.06.217

Tarutin A, Lyagaeva J, Farlenkov A, Plaksin S, Vdovin G, Demin A, Medvedev D. A Reversible protonic ceramic cell with symmetrically designed Pr2NiO4+δ-based electrodes: fabrication and electrochemical features. Mater. 2019;12(1):118. doi:10.3390/ma12010118

Tarutin AP, Lyagaeva JG, Farlenkov AS, Vylkov AI, Medvedev DA. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceramic Int. 2019;45(13): 16105–16112. doi:10.1016/j.ceramint.2019.05.127

Shannon RD, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–767. doi:10.1107/S0567739476001551




DOI: https://doi.org/10.15826/chimtech.2022.9.4.05

Copyright (c) 2022 Nataliia Tarasova, Anzhelika Galisheva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice