Cover Image

Dilatometric characteristics of weakly sintered ceramics

Yury I. Komolikov, Larisa V. Ermakova, Vladimir R. Khrustov, Victor D. Zhuravlev

Abstract


Thermal expansion of refractory ceramics CaZrO3, MgAl2O4, La2Zr2O7 and YSZ-12 was studied. The samples of the complex oxides were synthesized by solution combustion synthesis with glycine; the fuel:oxidant ratio was varied depending on the character of redox reaction. The linear thermal expansion coefficient (LTEC) of ceramics was measured on the samples with an initial density 23–52%. The maximal sinterability of 89–92% after 6 h annealing at 1550 °С was demonstrated by La2Zr2O7 and YSZ-12, and the minimal values (78–82%) – by CaZrO3 and MgAl2O4. All materials have close LTEC values, from 9.0 to 9.6·10–6 K–1.

Keywords


refractory oxide; weakly sintered ceramics; linear thermal expansion coefficient; thermal expansion; ceramic density

Full Text:

PDF

References


Zhu D, Miller RA. Development of Advanced Low Conductivity Thermal Barrier Coatings. Int J Appl Ceram Technol. 2004;1(1):86–94. doi:10.1111/j.1744-7402.2004.tb00158.x

Yang F, Zhao X, Xiao P. Thermal conductivities of YSZ/Al2O3 composites. J Eur Ceram Soc. 2010;30(15):3111–3116. doi:10.1016/j.jeurceramsoc.2010.07.007

Shen Z, He L, Xu Zh, Mu R, Huang G. Rare earth oxides stabilized La2Zr2O7 TBCs:EB-PVD, thermal conductivity and thermal cycling life. Surf. Coat. Technol. 2019;357:427–432. doi:10.1016/j.surfcoat.2018.10.045

Lyagaeva YG, Medvedev DA, Demin AK, Yaroslavtseva TV, Plaksin SV, Porotnikova NM. Specific features of preparation of dense ceramic based on barium zirconate. Semiconductors. 2014;48(10):1353–1358. doi:10.1134/S1063782614100182

Shahbazi H, Tataei M. A novel technique of gel-casting for producing dense ceramics of spinel (MgAl2O4). Ceram Int. 2019;45(A7):8727–8733. doi:10.1016/j.ceramint.2019.01.196

Lyagaeva YG, Medvedev DA, Demin AK, Tsiakaras P, Reznitskikh OG. Thermal expansion of materials in the barium cerate-zirconate system. Phys Solid State. 2015;7(2):285–289. doi:10.1134/S1063783415020250

Mohanraju S, Ramesha CM, Appaiah S, Kumar J, Krishna Prasad NJ. A study on the impact of coefficient of thermal expansion of Thermo-mechanical stresses on structural components. Mater Today Proc. 2021;46(7):2528–2533. doi:10.1016/j.matpr.2021.01.756

Mobasherpour I, Solati Hashjin M, Razavi Toosi SS, Darvishi Kamachali R. Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram Int. 2009;35(4):1569–1574. doi:10.1016/j.ceramint.2008.08.017

Yu QM, Cen L. Residual stress distribution along interfaces in thermal barrier coating system under thermal cycles. Ceram Int. 2017;43(3):3089–3100. doi:10.1016/j.ceramint.2016.11.119

Lim LY, Meguid SA. Thermomechanical simulations of the transient coupled effect of thermal cycling and oxidation on residual stresses in thermal barrier coatings. Ceram Int. 2022;48(3):3133–3147. doi:10.1016/j.ceramint.2021.10.087

Wei Z-Y, Cai H-N, Zhao S-D. Study on spalling mechanism of APS thermal barrier coatings considering surface vertical crack evolution affected by surrounding cracks. Ceram Int. 2022;48(8):11445–11455. doi:10.1016/j.ceramint.2022.01.001

Hutsaylyuk V, Student M, Zadorozhna Kh, Student O, Veselivska H, Gvosdetskii V, Maruschak P, Pokhmurska H. Improvement of wear resistance of aluminum alloy by HVOF method. J Mater Res Technol. 2020;9(6):16367–16377. doi:10.1016/j.jmrt.2020.11.102

Góral M, Swadźba R, Kubaszek T. TEM investigations of TGO formation during cyclic oxidation in two- and three-layered Thermal Barrier Coatings produced using LPPS, CVD and PS-PVD methods. Surf Coat Technol. 2020;394:125875. doi:10.1016/j.surfcoat.2020.125875

Ma D, Harvey TJ, Zhuk YN, Wellman RG, Wood RJK. Cavitation erosion performance of CVD W/WC coatings. Wear. 2020;452–453:203276. doi:10.1016/j.wear.2020.203276

Karaoglanli AC, Ozgurluk Y, Doleker KM. Comparison of microstructure and oxidation behavior of CoNiCrAlY coatings produced by APS, SSAPS, D-gun, HVOF and CGDS techniques. Vacuum. 2020;180:109609. doi:10.1016/j.vacuum.2020.109609

Grishina EP, Kudryakova NO, Ramenskaya LM. Thin-film Al2O3 coating on low carbon steel obtained by the sol–gel method with different peptizing acids: Corrosion investigation. Thin Solid Films. 2022;746:139125. doi:10.1016/j.tsf.2022.139125

Gallyamova R, Galyshev S, Musin F. Preparation of barrier SiO2 coating on carbon fibers by the sol-gel method. Mater Today Proc. 2019;11(1):286–289. doi:10.1016/j.matpr.2018.12.145

Deganello F, Tyagi AK. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact Mater. 2018;64(2):23–61. doi:10.1016/j.pcrysgrow.2018.03.001

Frikha K, Limousy L, Bouaziz J, Bennici S, Chaari K, Jeguirim M. Elaboration of alumina-based materials by solution combustion synthesis: A review. C. R. Chim. 2019;22(2–3):206–219. doi:10.1016/j.crci.2018.10.004

Lyagaeva J, Danilov N, Korona D, Farlenkov A, Medvedev D, Demin A, Animitsa I, Tsiakaras P. Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceram Int. 2017;43(9):7184–7192. doi:10.1016/j.ceramint.2017.03.006

Khaliullin ShM, Zhuravlev VD, and Bamburov VG. Solution-Combustion Synthesis of MZrO3 Zirconates (M = Ca, Sr, Ba) in Open Reactor: Thermodynamic Analysis and Experiment. Int J Self Propag High Temp Synth. 2017;26(2):93–101. doi:10.3103/S1061386217020078

Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A. Perovskite membranes by aqueous combustion synthesis: synthesis and properties. Sep Purif Technol. 2001;25(1–3):117–126. doi:10.1016/S1383-5866(01)00096-X

Zhuravlev V.D., Komolikov Yu.I., Ermakova L.V. Correlations among sintering temperature, shrinkage, and open porosity of 3.5YSZ/Al2O3 composites. Ceram Int. 2016;42:8005–8009. doi:10.1016/j.ceramint.2016.01.204

Rhodes WH. Agglomerate and particle size effects on sintering yttria-stabilised zirconia. J Am Ceram Soc. 1981;64(1):19–22. doi:10.1111/j.1151-2916.1981.tb09552.x




DOI: https://doi.org/10.15826/chimtech.2022.9.4.12

Copyright (c) 2022 Yury I. Komolikov, Larisa V. Ermakova, Vladimir R. Khrustov, Victor D. Zhuravlev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice