Cover Image

Soft mechanochemical synthesis and thermal stability of hydroxyapatites with different types of substitution

Natalya V. Eremina, Svetlana V. Makarova, Denis D. Isaev, Natalya V. Bulina

Abstract


The feasibility of soft mechanochemical synthesis was studied here for hydroxyapatite with various types of substitution. It was shown that this method allows obtaining hydroxyapatites substituted with copper or iron cations and hydroxyapatites cosubstituted with zinc cations and silicate groups. Thermal stability of the synthesized samples was evaluated. It was found that to preserve phase homogeneity of the material, the temperature during the preparation of ceramic products and coatings should not exceed 600–800 °C. An exception is the hydroxyapatite where a hydroxyl group is expected to be replaced by a copper cation during the synthesis at a degree of substitution x = 0.5. For this sample, the temperature of the the heat treatment can be increased to 1100–1200 °C because copper cations return to the hydroxyapatite crystal lattice at these temperatures, and the material becomes single-phase.

Keywords


mechanochemical synthesis; hydroxyapatite; substitution; iron; cupper; zinc; silicate; thermal stability

Full Text:

PDF

References


Hughes M, Rakovan J. The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl)2. Rev Mineral Geochem. 2002:48(1):1–12. doi:10.2138/rmg.2002.48.1

Dorozhkin SV. Calcium orthophospates (CaPO4): occurrence and properties. Prog Biomater. 2016:5(1):9–70. doi:10.1007/s40204-015-0045-z

Mucalo MR. Hydroxyapatite (HAp) for biomedical applications: Woodhead Publishing Limited Waltham; 2015. 364 p.

Kenny SM, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003:14(11):923–938. doi:10.1023/A:1026394530192

Kumar A, Kargozar S, Baino F, Han S. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds. A Rev Front Mater. 2019:6:313. doi:10.3389/fmats.2019.00313

Han Y, Wei Q, Chang P, Hu K, Okoro OV, Shavandi A, Nie L. Three-dimensional printing of hydroxyapatite composites for biomedical application. Cryst. 2021:11(4):353. doi:10.3390/cryst11040353

Mondal S, Dorozhkin SV, Pal U. Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WIREs Nanomed Nanobiotechnol. 2018:10(4):e1504. doi:10.1002/wnan.1504

Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015:41(8):9203–9231. doi:10.1016/j.ceramint.2015.03.316

Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Mater. 2009:2(2): 399–498. doi:10.3390/ma2020399

Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted Hydroxyapatites with Antibacterial Properties. BioMed Res Int. 2014;2014:178123. doi:10.1155/2014/178123

Patel N, Best SM, Bonifield W, Gibson IR, Hing KA, Damien E, Revell PA. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med. 2002:13(12):1199–1206. doi:10.1023/a:1021114710076

Anwar A, Akbar S, Sadiqa A, Kazmi M. Novel continuous flow synthesis, characterization and antibacterial studies of nanoscale zinc substituted hydroxyapatite bioceramics. Inorg Chim Acta. 2016:453:16–22. doi:10.1016/j.ica.2016.07.041

Mondal S, Manivasagan P, Bharathiraja S, Moorthy MS, Kim HH, Seo H, Lee KD, Oh J. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application. Int J Nanomed. 2017:12:8389–8410. doi:10.2147/IJN.S147355

Bulina NV, Chaikina MV, Prosanov IY, Gerasimov KB, Ishchenco AV, Dudina DV. Mechanochemical synthesis of SiO44– - substituted hydroxyapatite, part III – thermal stability. Eur J Inorg Chem. 2016:2016(12):1866–1874. doi:10.1002/ejic.201501486

Othmani M, Bachoua H, Ghandour Y, Aissa A, Debbabi M. Synthesis, characterization and catalytic properties of copper-substituted hydroxyapatite nanocrystals. Mater Res Bull. 2018:97:560–566. doi:10.1016/j.materresbull.2017.09.056

Chaikina MV, Bulina NV, Vinokurova OB, Prosanov IYu, Dudina DV. Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the “soft” mechanochemical synthesis of hydroxyapatite. Ceram Int. 2019:45(14):16927–16933. doi:10.1016/j.ceramint.2019.05.239

Makarova SV, Bulina NV, Prosanov IY, Chaikina MV, Ishcenko AV. Mechanochemical synthesis of apatite with the simultaneous substitutions of calcium by lanthanum and phosphate by silicate. Russ J Inorg Chem. 2020:65(12):1831-1837. doi:10.1134/S0036023620120116

Baikie T, Ng GM, Madhavi S, Pramana SS, Blake K, Elcombe M, White TJ. The crystal chemistry of the alkaline-earth apatites A10(PO4)6CuxOy(H)z (A = Ca, Sr and Ba). Dalton Trans. 2009:34: 6722–6726. doi:10.1039/b906639j

Gomes S, Kaur A, Nedelec JM, Renaudin G. X-ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem B. 2014:2(5):536–545. doi:10.1039/C3TB21397H

Karpov AS, Nuss J, Jansen M, Kazin PE, Tretyakov YD. Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels. Solid State Sci. 2003:5(9):1277–1283. doi:10.1016/S1293-2558(03)00152-3




DOI: https://doi.org/10.15826/chimtech.2022.9.3.05

Copyright (c) 2022 Natalya V. Eremina, Svetlana V. Makarova, Denis D. Isaev, Natalya V. Bulina

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)