Development of technology for deposition of thick copper layers onto ceramic substrates applied in power electronics

Yuri K. Nepochatov, Pyotr M. Pletnev, Vladimir F. Kosarev, Tatiana S. Gudyma


The basic element of the design of a power module is a metallized ceramic substrate. In this work, the formation of metallization coatings by the method of thermal transfer of metallization pastes (Mo-Mn-Si + binder) for alumina and aluminum nitride ceramics was carried out. The fixing of the metallization coating on the ceramic substrate was performed by firing at a temperature of 1320 °C. The subsequent deposition of the copper layer was carried out by the method of cold gas-dynamic spraying (CGDS) followed by annealing of the deposited coating. For high-quality adhesion, the optimum annealing temperature was 1000 °C.


ceramics; metallization coating; aluminum nitride; copper; adhesion

Full Text:



Oyinbo ST, Jen T-C. A comparative review on cold gas dynamic spraying processes and technologies. Manuf Rev. 2019;6:25. doi:10.1051/mfreview/2019023

Irissoy E, Poirier D, Vo P, Cojocary CV, Aghasibeig M, Yue S. How to unleash the remarkable potential of cold spray: a perspective. J Therm Spray Technol. 2022;31:908–919. doi:10.1007/s11666-022-01363-7

Rahmati S, Veiga RGA, Zuniga A, Jodoin B. A numerical approach to study the oxide layer effect on adhesion in cold spray. J Therm Spray Technol. 2021;30:1777–1791. doi:10.1007/s11666-021-01245-4

Lee C, Kim J. Microstructure of kinetic spray coating: a review. J Therm Spray Technol. 2015;24:592–610. doi:10.1007/s11666-015-0223-5

Brassart L-H, Besson J, Delloro F, Haboussa D, Delabrouille F, Rolland G, Shen Y, Gourgues-Lorenzon A-F. Effect of various heat treatments on the microstructure of 316 L austenitic stainless steel coatings obtaining of cold spray. J Therm Spray Technol. 2022;331:1725–1746. doi:10.1007/s11666-022-01402-3

Grigoriev S, Gershman E, Gershman I, Mironov A, Podrabinnik P. Microstructural studies of the copper-based coating obtained by cold gas-dynamic spraying for the restoration of worn-out contact wires. Coatings. 2021;11(9):1067. doi:10.3390/coatings11091067

Dukhuizen RC, Smith MF. Gas dynamic principles of cold spray deposition. J Cold Spray Technol. 1998;7(2):205–212. doi:10.1361/105996398770350945

Exel K, Schulz-Harder J. Water cooled DBC direct bonded copper substrates. IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. 1998;4:2350–2354. doi:10.1109/IECON.1998.724090

Schmidbauer S, Hahn J, Richter F. Adhesion of metal coatings on ceramics deposited by different techniques. Surface Coat Technol. 1993;59:325–329. doi:10.1016/0257-8972(93)90106-X

Jr AF, Shanafield DJ. Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics. Ceram. 2004;50(315):247–253. doi:10.1590/S0366-69132004000300012

Groen P, Vanlierop J, Toonen J. Electrical conductivity of AlN ceramics at high temperatures. J Eur Ceram Soc. 1993;11(4):353–358. doi:10.1016/0955-2219(93)90036-Q

Rounds R, Sarkar B, Alden D, Guo Q, Klump A, Hartmann C, Nagashima T, Kirste R, Franke A, Bickermann M, Kumagai Y, Sitar Z, Collazo R. The influence of point defects on the thermal conductivity of AlN crystals. J Appl Phys. 2018;123(18):185107. doi:10.1063/1.5028141

Mccauley J. Structure and properties of aluminum nitride and alon ceramics. Elsevier's Encycl of Mater Sci Technol. 2001;127–132. doi:10.1016/B0-08-043152-6/00028-0.

Roelison RN, Vergy C, Liao H. Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Mater Des. 2017;133:266–287. doi:10.1016/j.matdes.2017.07.067

Schmidt T, Gartner F, Assadi H, Kreye H. Development of generalizated parameter window for cold spray deposition. Acta Mater. 2006;54:729–742. doi:10.1016/j.actamat.2005.10.005


Copyright (c) 2022 Yuri K. Nepochatov, Pyotr M. Pletnev, Vladimir F. Kosarev, Tatiana S. Gudyma

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2022
ISSN 2411-1414 (Online)