Cover Image

Chemical-mechanical treatment of potato starch for isolation of nanocrystal particles

Denis E. Tryakhov, Anatoly A. Polytov

Abstract


Starch nanocrystals were isolated by a combination of acid hydrolysis and sonication of native potato starch. The obtained samples were examined by XRD, scanning electron microscopy and static light scattering. An increase in hydrolysis time increases the degree of crystallinity from 47 to 66%. By changing the processing conditions, it is possible to isolate particles of a given size. First, submicron flat particles with dimensions of 3000–5000 nm and a thickness of 80–100 nm are obtained. With longer processing, approximately isometric nanoscale particles remain. Based on the obtained data, a stepwise topochemical mechanism for the formation of starch nanoparticles was proposed.

Keywords


Starch nanocrystals, potato starch, ultrasonic treatment, chemical-mechanical treatment; topochemical hydrolysis of starch granule

Full Text:

PDF

References


Yu L, Liu X, Petinakis E, Dean K, Bateman S. Starch-based Blends, Composites and Nanocomposites. Royal Soc Chem. 2015:439. doi:10.1007/978-3-642-20940-6_4

Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR. Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polym. 2008;49:1860–1870. doi:10.1016/j.polymer.2008.02.020

Garcıґa NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym. 2011;84:203–210. doi:10.1016/j.carbpol.2010.11.024

Han J, Zhao D, Li D, Wang X, Jin Z, Han KZ. Polymer-based nanomaterials and applications for vaccines and drugs. Polym. 2018;10:31. doi:10.3390/polym10010031

Gutjahr A, Phelip C., Coolen A-L, Monge C, Boisgard A-S, Paul S, Verrier B. Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines. 2016;4(4):34. doi:10.3390/vaccines4040034

Kreuter J. Nanoparticles as adjuvants for vaccines. Vaccine Des. 1995:463–472. doi:10.1007/978-1-4615-1823-5_19

Wilczewska A, Niemirowicz K, Markiewicz K, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi:10.1016/S1734-1140(12)70901-5

Le Corre D, Angellier-Coussy H. Preparation and application of starch nanoparticles for nanocomposites: A review. React Funct Polym. 2014;85:97–120. doi:10.1016/j.reactfunctpolym.2014.09.02

Nara S, Komiya T. Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch‐Stärke. 1983;35(12):407–410. doi:10.1002/star.19830351202

Zhu F, Cui R. Comparison of physicochemical properties of oca (Oxalis tuberosa), potato, and maize starches. Int J Biol Macromol. 2020;148:601–607. doi:10.1016/j.ijbiomac.2020.01.028

Angellier H, Putaux J, Molina-Boisseau S, Dupeyre D, Dufresne A. Starch nanocrystals fillers in an acrylic polymer matrix. Macromol Symposia. 2005;221:95–104. doi:10.1002/MASY.200550310

Sujka M, Jamroz J. Starch granule porosity and its changes by means of amylolysis. Int Agrophys. 2007;21(1):107–113.

Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromol. 2004;5(4):1545–1551. doi:10.1021/bm049914u

Boldyrev VV, Bulens RM, Delmon B. The control of reactivity of solids. Elsevier Scientific Publishing Company: The Netherlands. 1979. 226 p. doi:10.1016/0032-5910(80)87021-5




DOI: https://doi.org/10.15826/chimtech.2022.9.3.13

Copyright (c) 2022 Denis E. Tryakhov, Anatoly A. Polytov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice